Efficient Quantum Dot Solar Cells with Sustainable Oxide Thin Films

被引:0
作者
Acharya, Amit [1 ,2 ]
Ye, Mingxiao [1 ,2 ]
Kabel, Jeff [1 ,2 ]
Sharma, Sambhawana [1 ,2 ]
Asthana, Anjana [3 ]
Neupane, Kumar [1 ,2 ]
Uddin, Join [1 ,2 ]
Zhang, Dongyan [1 ,2 ]
Yap, Yoke Khin [1 ,2 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Elizabeth & Richard Henes Ctr Quantum Phenomena, Houghton, MI 49931 USA
[3] Michigan Technol Univ, Dept Mat Sci & Engn, Houghton, MI 49931 USA
关键词
quantum dot solar cells; solar cells; zincoxide; molybdenum trioxide; pulsed-laser deposition; BORON-NITRIDE NANOTUBES; SEMICONDUCTORS; PEROVSKITES; EMISSION; LIGHT;
D O I
10.1021/acsaem.5c00612
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin-film solar cells are more promising for low-cost and large-area photovoltaic devices. Tremendous efforts have been invested in using cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and perovskite thin films for energy harvesting. In contrast, zinc oxide (ZnO) and molybdenum trioxides (MoO3) are relatively earth-abundant, environmentally stable, and sustainable for thin-film solar cells. ZnO nanostructures have recently gained success in producing effective (similar to 8.55%) quantum dot solar cells (QDSCs). While nanostructures offer high surface areas to receive electrons from quantum dots (QDs), they are dominated by surface dangling bonds. These defects can trap electrons and limit effective transport at the interface between the ZnO nanostructures and QDs. We anticipate that QDSCs based on thin-film materials can minimize such interface trapping states and be more efficient than those demonstrated with ZnO nanostructures. We strategically develop quality ZnO and MoO3 thin films to produce QDSCs with power conversion efficiency as high as 11.4%. Our approach will inspire others to use scalable thin-film technology and QDs for solar energy harvesting based on sustainable ZnO and MoO3.
引用
收藏
页码:8110 / 8116
页数:7
相关论文
共 39 条
[1]   Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si [J].
Bae, SH ;
Lee, SY ;
Kim, HY ;
Im, S .
OPTICAL MATERIALS, 2001, 17 (1-2) :327-330
[2]   High temperature excitonic stimulated emission from ZnO epitaxial layers [J].
Bagnall, DM ;
Chen, YF ;
Zhu, Z ;
Yao, T ;
Shen, MY ;
Goto, T .
APPLIED PHYSICS LETTERS, 1998, 73 (08) :1038-1040
[3]   Two-Dimensional Gold Quantum Dots with Tunable Bandgaps [J].
Bhandari, Shiva ;
Hao, Boyi ;
Waters, Kevin ;
Lee, Chee Huei ;
Idrobo, Juan-Carlos ;
Zhang, Dongyan ;
Pandey, Ravindra ;
Yap, Yoke Khin .
ACS NANO, 2019, 13 (04) :4347-4353
[4]   Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode [J].
Chebrolu, Venkata Thulasivarma ;
Kim, Hee-Je .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (17) :4911-4933
[5]  
Chuang Chia-Hao M, 2014, Nat Mater, V13, P796, DOI 10.1038/nmat3984
[6]   Metal Oxide Semiconductors for Dye- and Quantum-Dot-Sensitized Solar Cells [J].
Concina, Isabella ;
Vomiero, Alberto .
SMALL, 2015, 11 (15) :1744-1774
[7]   Optimization of the zinc oxide electron transport layer in P3HT:PC61BM based organic solar cells by annealing and yttrium doping [J].
Das, Sayantan ;
Alford, T. L. .
RSC ADVANCES, 2015, 5 (57) :45586-45591
[8]  
Extance A, 2019, NATURE, V570, P429, DOI 10.1038/d41586-019-01985-y
[9]   Fully transparent ZnO thin-film transistor produced at room temperature [J].
Fortunato, EMC ;
Barquinha, PMC ;
Pimentel, ACMBG ;
Gonçalves, AMF ;
Marques, AJS ;
Pereira, LMN ;
Martins, RFP .
ADVANCED MATERIALS, 2005, 17 (05) :590-+
[10]   Unveiling of a puzzling dual ionic migration in lead- and iodide-deficient halide perovskites (d-HPs) and its impact on solar cell J-V curve hysteresis [J].
Gollino, Liam ;
Zheng, Daming ;
Mercier, Nicolas ;
Pauporte, Thierry .
EXPLORATION, 2024, 4 (01)