Deep learning-based postoperative glioblastoma segmentation and extent of resection evaluation: Development, external validation, and model comparison

被引:4
作者
Cepeda, Santiago [1 ]
Romero, Roberto [2 ]
Luque, Lidia [3 ,4 ,5 ]
Garcia-Perez, Daniel [6 ]
Blasco, Guillermo [7 ]
Luppino, Luigi Tommaso [8 ]
Kuttner, Samuel [8 ,9 ]
Esteban-Sinovas, Olga [1 ]
Arrese, Ignacio [1 ]
Solheim, Ole [10 ,11 ]
Eikenes, Live [12 ]
Karlberg, Anna [12 ,13 ]
Perez-Nunez, Angel [14 ,15 ,16 ]
Zanier, Olivier [17 ]
Serra, Carlo [17 ]
Staartjes, Victor E. [17 ]
Bianconi, Andrea [18 ,19 ]
Rossi, Luca Francesco [20 ]
Garbossa, Diego [19 ]
Escudero, Trinidad [21 ]
Hornero, Roberto [2 ,22 ]
Sarabia, Rosario [1 ]
机构
[1] Rio Hortega Univ Hosp, Dept Neurosurg, Dulzaina 2, Valladolid 47014, Spain
[2] Biomat & Nanomed CIBER BBN, Ctr Biomed Res Network Bioengn, Valladolid, Spain
[3] Oslo Univ Hosp, Dept Phys & Computat Radiol, Clin Radiol & Nucl Med, Computat Radiol & Artificial Intelligence CRAI, Oslo, Norway
[4] Univ Oslo, Dept Phys, Oslo, Norway
[5] Oslo Univ Hosp, Dept Phys & Computat Radiol, Clin Radiol & Nucl Med, Oslo, Norway
[6] Albacete Univ Hosp, Dept Neurosurg, Albacete, Spain
[7] La Princesa Univ Hosp, Dept Neurosurg, Madrid, Spain
[8] UiT Arctic Univ Norway, Dept Phys & Technol, Tromso, Norway
[9] Univ Hosp North Norway, PET Imaging Ctr, Tromso, Norway
[10] St Olavs Univ Hosp, Dept Neurosurg, Trondheim, Norway
[11] Norwegian Univ Sci & Technol, Dept Neuromed & Movement Sci, Trondheim, Norway
[12] Norwegian Univ Sci & Technol NTNU, Fac Med & Hlth Sci, Dept Circulat & Med Imaging, Trondheim, Norway
[13] Trondheim Reg & Univ Hosp, St Olavs Hosp, Dept Radiol & Nucl Segmentat Med, Trondheim, Norway
[14] 12 Octubre Univ Hosp i 12, Dept Neurosurg, Madrid, Spain
[15] Univ Complutense Madrid, Sch Med, Dept Surg, Madrid, Spain
[16] 12 Octubre Univ Hosp i 12, Inst Invest Sanit, Madrid, Spain
[17] Univ Zurich, Univ Hosp Zurich, Machine Intelligence Clin Neurosci & Microsurg Neu, Dept Neurosurg,Clin Neurosci Ctr, Zurich, Switzerland
[18] Osped Policlin San Martino, IRCCS Oncol & Neurosci, Div Neurosurg, Genoa, Italy
[19] Univ Turin, Dept Neurosci Rita Levi Montalcini, Neurosurg Unit, Turin, Italy
[20] Polytech Univ Turin, Dept Informat, Turin, Italy
[21] Rio Hortega Univ Hosp, Dept Radiol, Valladolid, Spain
[22] Univ Valladolid, Inst Res Math IMUVA, Valladolid, Spain
关键词
deep learning; glioblastomas; neural network; postoperative; segmentation; CENTRAL-NERVOUS-SYSTEM; RECOMMENDATIONS; GLIOMA; ATLAS;
D O I
10.1093/noajnl/vdae199
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The pursuit of automated methods to assess the extent of resection (EOR) in glioblastomas is challenging, requiring precise measurement of residual tumor volume. Many algorithms focus on preoperative scans, making them unsuitable for postoperative studies. Our objective was to develop a deep learning-based model for postoperative segmentation using magnetic resonance imaging (MRI). We also compared our model's performance with other available algorithms.Methods To develop the segmentation model, a training cohort from 3 research institutions and 3 public databases was used. Multiparametric MRI scans with ground truth labels for contrast-enhancing tumor (ET), edema, and surgical cavity, served as training data. The models were trained using MONAI and nnU-Net frameworks. Comparisons were made with currently available segmentation models using an external cohort from a research institution and a public database. Additionally, the model's ability to classify EOR was evaluated using the RANO-Resect classification system. To further validate our best-trained model, an additional independent cohort was used.Results The study included 586 scans: 395 for model training, 52 for model comparison, and 139 scans for independent validation. The nnU-Net framework produced the best model with median Dice scores of 0.81 for contrast ET, 0.77 for edema, and 0.81 for surgical cavities. Our best-trained model classified patients into maximal and submaximal resection categories with 96% accuracy in the model comparison dataset and 84% in the independent validation cohort.Conclusions Our nnU-Net-based model outperformed other algorithms in both segmentation and EOR classification tasks, providing a freely accessible tool with promising clinical applicability.
引用
收藏
页数:12
相关论文
共 43 条
[1]   NS-HGlio: A generalizable and repeatable HGG segmentation and volumetric measurement AI algorithm for the longitudinal MRI assessment to inform RANO in trials and clinics [J].
Abayazeed, Aly H. ;
Abbassy, Ahmed ;
Mueeller, Michael ;
Hill, Michael ;
Qayati, Mohamed ;
Mohamed, Shady ;
Mekhaimar, Mahmoud ;
Raymond, Catalina ;
Dubey, Prachi ;
Nael, Kambiz ;
Rohatgi, Saurabh ;
Kapare, Vaishali ;
Kulkarni, Ashwini ;
Shiang, Tina ;
Kumar, Atul ;
Andratschke, Nicolaus ;
Willmann, Jonas ;
Brawanski, Alexander ;
De Jesus, Reordan ;
Tuna, Ibrahim ;
Fung, Steve H. ;
Landolfi, Joseph C. ;
Ellingson, Benjamin M. ;
Reyes, Mauricio .
NEURO-ONCOLOGY ADVANCES, 2023, 5 (01)
[2]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[3]   Deep learning-based algorithm for postoperative glioblastoma MRI segmentation: a promising new tool for tumor burden assessment [J].
Bianconi, Andrea ;
Rossi, Luca Francesco ;
Bonada, Marta ;
Zeppa, Pietro ;
Nico, Elsa ;
De Marco, Raffaele ;
Lacroce, Paola ;
Cofano, Fabio ;
Bruno, Francesco ;
Morana, Giovanni ;
Melcarne, Antonio ;
Ruda, Roberta ;
Mainardi, Luca ;
Fiaschi, Pietro ;
Garbossa, Diego ;
Morra, Lia .
BRAIN INFORMATICS, 2023, 10 (01)
[4]   Raidionics: an open software for pre- and postoperative central nervous system tumor segmentation and standardized reporting [J].
Bouget, David ;
Alsinan, Demah ;
Gaitan, Valeria ;
Helland, Ragnhild Holden ;
Pedersen, Andre ;
Solheim, Ole ;
Reinertsen, Ingerid .
SCIENTIFIC REPORTS, 2023, 13 (01)
[5]   Preoperative Brain Tumor Imaging: Models and Software for Segmentation and Standardized Reporting [J].
Bouget, David ;
Pedersen, Andre ;
Jakola, Asgeir S. ;
Kavouridis, Vasileios ;
Emblem, Kyrre E. ;
Eijgelaar, Roelant S. ;
Kommers, Ivar ;
Ardon, Hilko ;
Barkhof, Frederik ;
Bello, Lorenzo ;
Berger, Mitchel S. ;
Nibali, Marco Conti ;
Furtner, Julia ;
Hervey-Jumper, Shawn ;
Idema, Albert J. S. ;
Kiesel, Barbara ;
Kloet, Alfred ;
Mandonnet, Emmanuel ;
Muller, Domenique M. J. ;
Robe, Pierre A. ;
Rossi, Marco ;
Sciortino, Tommaso ;
van den Brink, Wimar A. ;
Wagemakers, Michiel ;
Widhalm, Georg ;
Witte, Marnix G. ;
Zwinderman, Aeilko H. ;
De Witt Hamer, Philip C. ;
Solheim, Ole ;
Reinertsen, Ingerid .
FRONTIERS IN NEUROLOGY, 2022, 13
[6]   A Deep Learning Approach for Automatic Segmentation during Daily MRI-Linac Radiotherapy of Glioblastoma [J].
Breto, Adrian L. ;
Cullison, Kaylie ;
Zacharaki, Evangelia I. ;
Wallaengen, Veronica ;
Maziero, Danilo ;
Jones, Kolton ;
Valderrama, Alessandro ;
de la Fuente, Macarena I. ;
Meshman, Jessica ;
Azzam, Gregory A. ;
Ford, John C. ;
Stoyanova, Radka ;
Mellon, Eric A. .
CANCERS, 2023, 15 (21)
[7]   Comparison of different automatic solutions for resection cavity segmentation in postoperative MRI volumes including longitudinal acquisitions [J].
Canalini, Luca ;
Klein, Jan ;
de Barros, Nuno Pedrosa ;
Sima, Diana Maria ;
Miller, Dorothea ;
Hahn, Horst .
MEDICAL IMAGING 2021: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING, 2021, 11598
[8]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[9]   Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials [J].
Ellingson, Benjamin M. ;
Wen, Patrick Y. ;
Cloughesy, Timothy F. .
NEUROTHERAPEUTICS, 2017, 14 (02) :307-320
[10]  
Ellingson BM, 2015, NEURO-ONCOLOGY, V17, P1188, DOI [10.1093/neuonc/nov225.24, 10.1093/neuonc/nov095]