Artificial Intelligence in Computational and Materials Chemistry: Prospects and Limitations

被引:0
作者
Olawade, David B. [1 ,2 ,3 ]
Fapohunda, Oluwaseun [4 ]
Usman, Sunday Oluwadamilola [5 ]
Akintayo, Abiola [6 ]
Ige, Ayokunle O. [7 ]
Adekunle, Yemi A. [8 ,9 ]
Adeola, Adedapo O. [10 ,11 ]
机构
[1] Univ East London, Sch Hlth Sport & Biosci, Dept Allied & Publ Hlth, London, England
[2] Medway NHS Fdn Trust, Dept Res & Innovat, Gillingham ME7 5NY, England
[3] York St John Univ, Dept Publ Hlth, London, England
[4] Univ Arizona, Dept Chem & Biochem, Tucson, AZ USA
[5] Univ Arizona, Dept Syst & Ind Engn, Tucson, AZ USA
[6] Univ Texas Dallas, Dept Chem & Biochem, Richardson, TX USA
[7] Univ Sains Malaysia, Sch Comp Sci, Gelugor 11800, Pulau Pinang, Malaysia
[8] Afe Babalola Univ, Coll Pharm, Dept Pharmaceut & Med Chem, Ado Ekiti, Ekiti, Nigeria
[9] Liverpool John Moores Univ, Fac Sci, Ctr Nat Prod Discovery, Sch Pharm & Biomol Sci, Byrom St, Liverpool L3 3AF, England
[10] Concordia Univ, Dept Chem & Biochem, Montreal, PQ H4B 1R6, Canada
[11] Concordia Univ, Ctr Nanosci Res, Montreal, PQ H4B 1R6, Canada
来源
CHEMISTRY AFRICA-A JOURNAL OF THE TUNISIAN CHEMICAL SOCIETY | 2025年
关键词
Artificial intelligence; Computational chemistry; Modelling tools; Machine learning; Quantum chemistry; Materials chemistry; MACHINE; DISCOVERY; DESIGN; NETWORK; PREDICTION; MOLECULES; INSIGHTS;
D O I
10.1007/s42250-025-01343-8
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Computational chemistry, at the intersection of theoretical chemistry and computer science, employs various models to analyze molecular structures and properties, enabling the understanding and prediction of intricate chemical processes. The integration of artificial intelligence (AI) has revolutionized several fields, particularly in materials chemistry, with applications spanning drug discovery, materials design, and quantum mechanics. However, challenges related to quantum system complexity, model interpretability, and data quality remain a few of the Achilles' heel of AI applications. This paper provides an overview of AI's evolution in computational and materials chemistry, focusing on several applications. AI's transformative potential in materials chemistry is emphasized, facilitating precise material property predictions, crucial for industries reliant on materials innovation. In materials chemistry, AI has led to substantial advancements, enabling the rapid discovery of materials with tailored properties. Yet, the challenges of modeling complex quantum systems, achieving model interpretability, and accessing high-quality data remain. The integration of AI into computational and materials chemistry promises to reshape the field, revolutionizing chemical research, materials design, and technological innovation. In order to harness AI's full potential, transparent AI models, advanced quantum simulations, optimized data utilization, scalable computing, interdisciplinary collaboration, and ethical AI practices are essential.
引用
收藏
页数:15
相关论文
共 89 条
[1]   Target highlights in CASP14: Analysis of models by structure providers [J].
Alexander, Leila T. ;
Lepore, Rosalba ;
Kryshtafovych, Andriy ;
Adamopoulos, Athanassios ;
Alahuhta, Markus ;
Arvin, Ann M. ;
Bomble, Yannick J. ;
Bottcher, Bettina ;
Breyton, Cecile ;
Chiarini, Valerio ;
Chinnam, Naga Babu ;
Chiu, Wah ;
Fidelis, Krzysztof ;
Grinter, Rhys ;
Gupta, Gagan D. ;
Hartmann, Marcus D. ;
Hayes, Christopher S. ;
Heidebrecht, Tatjana ;
Ilari, Andrea ;
Joachimiak, Andrzej ;
Kim, Youngchang ;
Linares, Romain ;
Lovering, Andrew L. ;
Lunin, Vladimir V. ;
Lupas, Andrei N. ;
Makbul, Cihan ;
Michalska, Karolina ;
Moult, John ;
Mukherjee, Prasun K. ;
Nutt, William Sam ;
Oliver, Stefan L. ;
Perrakis, Anastassis ;
Stols, Lucy ;
Tainer, John A. ;
Topf, Maya ;
Tsutakawa, Susan E. ;
Valdivia-Delgado, Mauricio ;
Schwede, Torsten .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (12) :1647-1672
[2]   Active learning accelerates ab initio molecular dynamics on reactive energy surfaces [J].
Ang, Shi Jun ;
Wang, Wujie ;
Schwalbe-Koda, Daniel ;
Axelrod, Simon ;
Gomez-Bombarelli, Rafael .
CHEM, 2021, 7 (03) :738-751
[3]   Computational Methods and Tools in Antimicrobial Peptide Research [J].
Aronica, Pietro G. A. ;
Reid, Lauren M. ;
Desai, Nirali ;
Li, Jianguo ;
Fox, Stephen J. ;
Yadahalli, Shilpa ;
Essex, Jonathan W. ;
Verma, Chandra S. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (07) :3172-3196
[4]   Mathematical and computational models of RNA nanoclusters and their applications in data-driven environments [J].
Badu, Shyam ;
Melnik, Roderick ;
Singh, Sundeep .
MOLECULAR SIMULATION, 2020, 46 (14) :1094-1115
[5]   Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification [J].
Baylon, Javier L. ;
Cilfone, Nicholas A. ;
Gulcher, Jeffrey R. ;
Chittenden, Thomas W. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (02) :673-688
[6]   Transient protein-protein interface prediction: datasets, features, algorithms, and the RAD-T predictor [J].
Bendell, Calem J. ;
Liu, Shalon ;
Aumentado-Armstrong, Tristan ;
Istrate, Bogdan ;
Cernek, Paul T. ;
Khan, Samuel ;
Picioreanu, Sergiu ;
Zhao, Michael ;
Murgita, Robert A. .
BMC BIOINFORMATICS, 2014, 15
[7]   Machine learning for molecular and materials science [J].
Butler, Keith T. ;
Davies, Daniel W. ;
Cartwright, Hugh ;
Isayev, Olexandr ;
Walsh, Aron .
NATURE, 2018, 559 (7715) :547-555
[8]  
Callaway E, 2023, Nature
[9]   Solving the quantum many-body problem with artificial neural networks [J].
Carleo, Giuseppe ;
Troyer, Matthias .
SCIENCE, 2017, 355 (6325) :602-605
[10]   Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy [J].
Chen, Dicheng ;
Wang, Zi ;
Guo, Di ;
Orekhov, Vladislav ;
Qu, Xiaobo .
CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (46) :10391-10401