FPGA Implementation of a Convolutional Recurrent Neural Network for Real-Time Sensor Data Processing

被引:0
作者
Testa, Riccardo [1 ]
Yaacoub, Mohamad [1 ]
Gianoglio, Christian [1 ]
Valle, Maurizio [1 ]
机构
[1] Univ Genoa, Dept Naval Elect Elect & Telecommun Engn, Genoa, Italy
来源
PROCEEDINGS OF SIE 2024 | 2025年 / 1263卷
关键词
Tiny Machine Learning; Field Programmable Gate Array (FPGA); Artificial Skin;
D O I
10.1007/978-3-031-71518-1_30
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a shallow Convolutional Recurrent Neural Network (C-RNN) that directly employs raw signals for classification, implemented on a Field Programmable Gate Array (FPGA) for artificial texture classification. Data was collected using a tactile sensing system based on piezoelectric polymers for eight artificial textures. Preliminary experimental results show that the neural network achieves an accuracy of 96.54%, and the implementation utilizes a total of 208,441 LUTs, 1,247 DSPs, 74,679 flip-flops, and 306 BRAM. The estimated latency is 1,242 clock cycles, corresponding to 6.21 mu s with a 200 MHz clock used in the synthesis.
引用
收藏
页码:258 / 265
页数:8
相关论文
共 14 条
[1]   Fast convolutional neural networks on FPGAs with hls4ml [J].
Aarrestad, Thea ;
Loncar, Vladimir ;
Ghielmetti, Nicolo ;
Pierini, Maurizio ;
Summers, Sioni ;
Ngadiuba, Jennifer ;
Petersson, Christoffer ;
Linander, Hampus ;
Iiyama, Yutaro ;
Di Guglielmo, Giuseppe ;
Duarte, Javier ;
Harris, Philip ;
Rankin, Dylan ;
Jindariani, Sergo ;
Pedro, Kevin ;
Nhan Tran ;
Liu, Mia ;
Kreinar, Edward ;
Wu, Zhenbin ;
Hoang, Duc .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (04)
[2]   Novel Casestudy and Benchmarking of AlexNet for Edge AI: From CPU and GPU to FPGA [J].
Al-Ali, Firas ;
Gamage, Thilina Doremure ;
Nanayakkara, Hewa W. T. S. ;
Mehdipour, Farhad ;
Ray, Sayan Kumar .
2020 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2020,
[3]   Neuromorphic Tactile Sensing System for Textural Features Classification [J].
Ali, Haydar Al Haj ;
Abbass, Yahya ;
Gianoglio, Christian ;
Ibrahim, Ali ;
Oh, Changjae ;
Valle, Maurizio .
IEEE SENSORS JOURNAL, 2024, 24 (10) :17193-17207
[4]  
[Anonymous], 2015, An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition
[5]   Accelerating Deep Neural Networks implementation: A survey [J].
Dhouibi, Meriam ;
Ben Salem, Ahmed Karim ;
Saidi, Afef ;
Ben Saoud, Slim .
IET COMPUTERS AND DIGITAL TECHNIQUES, 2021, 15 (02) :79-96
[6]   Fast inference of deep neural networks in FPGAs for particle physics [J].
Duarte, J. ;
Han, S. ;
Harris, P. ;
Jindariani, S. ;
Kreinar, E. ;
Kreis, B. ;
Ngadiuba, J. ;
Pierini, M. ;
Rivera, R. ;
Tran, N. ;
Wu, Z. .
JOURNAL OF INSTRUMENTATION, 2018, 13
[7]  
FastML Team, 2023, HLS4ML
[8]   FPGA implementation of two multilayer perceptron neural network in cascade for efficient real time hand gestures tracking [J].
Heidaryan, Mehdi ;
Karimi, Gholamreza .
MICROPROCESSORS AND MICROSYSTEMS, 2023, 100
[9]   An FPGA-Based Upper-Limb Rehabilitation Device for Gesture Recognition and Motion Evaluation Using Multi-Task Recurrent Neural Networks [J].
Liu, Haoyan ;
Panahi, Atiyehsadat ;
Andrews, David ;
Nelson, Alexander .
IEEE SENSORS JOURNAL, 2022, 22 (04) :3605-3615
[10]   Design and Evaluation of CPU-, GPU-, and FPGA-Based Deployment of a CNN for Motor Imagery Classification in Brain-Computer Interfaces [J].
Pacini, Federico ;
Pacini, Tommaso ;
Lai, Giuseppe ;
Zocco, Alessandro Michele ;
Fanucci, Luca .
ELECTRONICS, 2024, 13 (09)