Insights Into YOLOv9-Based Breast Mass Detection Using Ultrasound Images

被引:0
作者
Erragzi, Nouhaila [1 ]
Moussaid, Abdelghani [2 ]
Zrira, Nabila [3 ]
Benmiloud, Ibtissam [2 ]
Sebihi, Rajaa [1 ]
Ngote, Nabil [4 ]
机构
[1] Mohammed V Univ, Fac Sci, LPHE Modeling & Simulat, Rabat, Morocco
[2] Natl Super Sch Mines Rabat, CPS2E Lab, MECAtron Team, Rabat, Morocco
[3] Natl Super Sch Mines Rabat, LISTD Lab, ADOS Team, Rabat, Morocco
[4] Natl Super Sch Mines Rabat, Abulcasis Int Univ Hlth Sci, Rabat, Morocco
来源
2024 IEEE THIRTEENTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS, IPTA 2024 | 2024年
关键词
Ultrasound; Artificial Intelligence; Deep Learning; Breast Lesion Detection; YOLOv9; SEGMENTATION;
D O I
10.1109/IPTA62886.2024.10755541
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The most prevalent form of cancer globally is breast cancer, which predominantly impacts women. Early detection ensures successful treatment of breast cancer, significantly improving patients' survival chances. Various imaging modalities, including mammography and ultrasound, are utilized for breast cancer screening. Incorporating new technologies is essential for better patient management, particularly for those with malignant masses. Artificial intelligence can assist radiologists by training neural networks to detect breast lesions on mammograms or ultrasounds using deep learning techniques. In this article, the YOLOv9 network is trained on two public ultrasound databases, UDIAT and BUSIS. The network successfully localized malignant and benign masses with a precision of 83%, a recall of 82%, and a mAP of 87% in the UDIAT dataset. In the BUSIS dataset, our model achieved a precision of 75%, a recall of 88%, and a mAP of 90%. Furthermore, we used real Moroccan cases to evaluate the model's performance.
引用
收藏
页数:6
相关论文
共 27 条
[1]  
Abouche Hind, 2022, 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P347, DOI 10.1109/ASONAM55673.2022.10068614
[2]  
Al Masry Z., 2021, Gynecologie Obstetrique Fertilite & Senologie
[3]   Current and future burden of breast cancer: Global statistics for 2020 and 2040 [J].
Arnold, Melina ;
Morgan, Eileen ;
Rumgay, Harriet ;
Mafra, Allini ;
Singh, Deependra ;
Laversanne, Mathieu ;
Vignat, Jerome ;
Gralow, Julie R. ;
Cardoso, Fatima ;
Siesling, Sabine ;
Soerjomataram, Isabelle .
BREAST, 2022, 66 :15-23
[4]   An intelligent ensemble classification method based on multi-layer perceptron neural network and evolutionary algorithms for breast cancer diagnosis [J].
Azad, Saeed Talatian ;
Ahmadi, Gholamreza ;
Rezaeipanah, Amin .
JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2022, 34 (06) :949-969
[5]   Automated breast cancer detection and classification using ultrasound images: A survey [J].
Cheng, H. D. ;
Shan, Juan ;
Ju, Wen ;
Guo, Yanhui ;
Zhang, Ling .
PATTERN RECOGNITION, 2010, 43 (01) :299-317
[6]  
Chien CT, 2024, Arxiv, DOI [arXiv:2403.11249, DOI 10.1049/ELL2.13248]
[7]   Assessment of deep learning algorithms to predict histopathological diagnosis of breast cancer: first Moroccan prospective study on a private dataset [J].
El Agouri, H. ;
Azizi, M. ;
El Attar, H. ;
El Khannoussi, M. ;
Ibrahimi, A. ;
Kabbaj, R. ;
Kadiri, H. ;
BekarSabein, S. ;
EchCharif, S. ;
Mounjid, C. ;
El Khannoussi, B. .
BMC RESEARCH NOTES, 2022, 15 (01)
[8]   US-Net: A Breast Ultrasound Image Segmentation using Deep Learning [J].
Erragzi, Nouhaila ;
Zrira, Nabila ;
Jimi, Anwar ;
Benmiloud, Ibtissam ;
Sebihi, Rajaa ;
Ngote, Nabil .
PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, :597-603
[9]   Application of Deep Learning Methods in a Moroccan Ophthalmic Center: Analysis and Discussion [J].
Farahat, Zineb ;
Zrira, Nabila ;
Souissi, Nissrine ;
Benamar, Safia ;
Belmekki, Mohammed ;
Ngote, Mohamed Nabil ;
Megdiche, Kawtar .
DIAGNOSTICS, 2023, 13 (10)
[10]  
Jimi Anwar, 2022, 2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), P370, DOI 10.1109/ASONAM55673.2022.10068634