A new algorithm by embedding structured data for low-rank tensor ring completion

被引:0
作者
Wen, Ruiping [1 ]
Liu, Tingyan [2 ]
Pei, Yalei [2 ]
机构
[1] Taiyuan Normal Univ, Shanxi Key Lab Intelligent Optimizat Comp & Blockc, Jinzhong 030619, Shanxi, Peoples R China
[2] Taiyuan Normal Univ, Sch Math & Stat, Jinzhong 030619, Shanxi, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 03期
关键词
low-rank tensor completion; tensor ring decomposition; embedded space; structured data; DECOMPOSITIONS; IMAGE; FACTORIZATION; OPTIMIZATION;
D O I
10.3934/math.2025297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we put up with a new algorithm for tensor completion problems that include missing slices or row/column fibers, where embedding a structured tensor by a multi-way delay- embedding transform (MDT) makes the tensor to be completed have a special structure. The main idea is to employ a tensor completion algorithm based on the tensor ring rank, constructing latent tensor ring factors with a structure that approximates the original tensor starting from the tensor structure. It is also proved that the sequence generated by the new algorithm converges to the optimal solution. Finally, the feasibility of the proposed algorithm is verified by experiments. Compared with other completed algorithms based on tensor ring rank, the completed accuracy is improved, up to 30%.
引用
收藏
页码:6492 / 6511
页数:20
相关论文
共 40 条
[1]   Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train [J].
Bengua, Johann A. ;
Phien, Ho N. ;
Hoang Duong Tuan ;
Do, Minh N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (05) :2466-2479
[2]   Image inpainting [J].
Bertalmio, M ;
Sapiro, G ;
Caselles, V ;
Ballester, C .
SIGGRAPH 2000 CONFERENCE PROCEEDINGS, 2000, :417-424
[3]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[4]   A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation [J].
Chen, Xinyu ;
He, Zhaocheng ;
Sun, Lijun .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 98 :73-84
[5]   Tensor decompositions, alternating least squares and other tales [J].
Comon, P. ;
Luciani, X. ;
de Almeida, A. L. F. .
JOURNAL OF CHEMOMETRICS, 2009, 23 (7-8) :393-405
[6]  
Ding T, 2007, IEEE I CONF COMP VIS, P817
[7]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[8]   Most Tensor Problems Are NP-Hard [J].
Hillar, Christopher J. ;
Lim, Lek-Heng .
JOURNAL OF THE ACM, 2013, 60 (06)
[9]  
Hitchcock F.L., 1927, J MATH PHYS, V6, P164, DOI [10.1002/sapm192761164https://onlinelibrary.wiley.com/doi/pdf/10.1002/sapm192761164, 10.1002/sapm192761164, DOI 10.1002/SAPM192761164]
[10]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500