Introduction to the Minitrack on Explainable Artificial Intelligence (XAI)

被引:0
作者
Meske, Christian [1 ]
Abedin, Babak [2 ]
Klier, Mathias [3 ]
Rabhi, Fethi A. [4 ]
机构
[1] Ruhr Univ Bochum, Bochum, Germany
[2] Macquarie Univ, N Ryde, NSW 2109, Australia
[3] Univ Ulm, Ulm, Germany
[4] UNSW Australia, Sydney, NSW, Australia
来源
PROCEEDINGS OF THE 57TH ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES | 2024年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Artificial Intelligence (AI) has diffused into multiple business domains, while achieving or even exceeding human task performance. However, most AI systems remain "black boxes" that developers, users, and decision-makers find challenging to comprehend. Therefore, Explainable Artificial Intelligence (XAI) focuses on creating highly efficient intelligent systems that enable users to understand, trust, and scrutinize them appropriately.
引用
收藏
页码:1285 / 1286
页数:2
相关论文
共 6 条
[1]   Trends and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda [J].
Abdul, Ashraf ;
Vermeulen, Jo ;
Wang, Danding ;
Lim, Brian ;
Kankanhalli, Mohan .
PROCEEDINGS OF THE 2018 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2018), 2018,
[2]   Managing the tension between opposing effects of explainability of artificial intelligence: a contingency theory perspective [J].
Abedin, Babak .
INTERNET RESEARCH, 2022, 32 (02) :425-453
[3]   Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI) [J].
Adadi, Amina ;
Berrada, Mohammed .
IEEE ACCESS, 2018, 6 :52138-52160
[4]  
Forster M., 2020, P INT C INF SYST 202
[5]  
Meske C, 2022, Hawaii Int Con Sys S, P1468
[6]   Explainable Artificial Intelligence: Objectives, Stakeholders, and Future Research Opportunities [J].
Meske, Christian ;
Bunde, Enrico ;
Schneider, Johannes ;
Gersch, Martin .
INFORMATION SYSTEMS MANAGEMENT, 2022, 39 (01) :53-63