Monte Carlo Dose Simulation for In-Vivo X-Ray Nanoscopy

被引:6
作者
Wagner, Fabian [1 ]
Thies, Mareike [1 ]
Karolczak, Marek [2 ]
Pechmann, Sabrina [3 ]
Huang, Yixing [1 ]
Gu, Mingxuan [1 ]
Kling, Lasse [3 ,4 ]
Weidner, Daniela [5 ,6 ]
Aust, Oliver [7 ]
Schett, Georg [5 ,6 ]
Christiansen, Silke [3 ,4 ]
Maier, Andreas [1 ]
机构
[1] FAU Erlangen Nurnberg, Pattern Recognit Lab, Erlangen, Germany
[2] FAU Erlangen Nurnberg, Inst Med Phys & Microtissue Engn, Erlangen, Germany
[3] Fraunhofer Inst Ceram Technol & Syst IKTS, Forchheim, Germany
[4] Inst Nanotechnol & Correlat Microscopy eV INAM, Forchheim, Germany
[5] FAU Erlangen Nurnberg, Dept Internal Med Rheumatol & Immunol 3, Erlangen, Germany
[6] Univ Hosp Erlangen, Erlangen, Germany
[7] Leibniz Inst Analyt Sci ISAS, Dortmund, Germany
来源
BILDVERARBEITUNG FUR DIE MEDIZIN 2022 | 2022年
关键词
D O I
10.1007/978-3-658-36932-3_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In-vivo x-ray microscopy (XRM) studies can help understanding the bone metabolism of living mice to investigate treatments for bone-related diseases like osteoporosis. To adhere to dose limits for living animals and avoid perturbing the cellular bone remodeling processes, knowledge of the tissue-dependent dose distribution during CT acquisition is required. In this work, a Monte Carlo (MC) simulation-based pipeline is presented, estimating the deposited energy in a realistic phantom of a mouse leg during an in-vivo acquisition. That phantom is created using a high-resolution ex-vivo XRM scan to follow the anatomy of a living animal as closely as possible. The simulation is calibrated on dosimeter measurements of the x-ray source to enforce realistic simulation conditions and avoid uncertainties due to an approximation of the present number of x-rays. Eventually, the presented simulation pipeline allows determining maximum exposure times during different scan protocols with the overall goal of in-vivo experiments with few-micrometer isotropic CT resolution.
引用
收藏
页码:107 / 112
页数:6
相关论文
共 9 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]  
[Anonymous], 2008, NIST STANDARD REFERE
[3]  
Arce P., 2008, NUCL SCI S C RECORD, P3162, DOI DOI 10.1109/NSSMIC.2008.4775023
[4]   10 Gy total body irradiation increases risk of coronary sclerosis, degeneration of heart structure and function in a rat model [J].
Baker, John E. ;
Fish, Brian L. ;
Su, Jidong ;
Haworth, Steven T. ;
Strande, Jennifer L. ;
Komorowski, Richard A. ;
Migrino, Raymond Q. ;
Doppalapudi, Anil ;
Harmann, Leanne ;
Li, X. Allen ;
Hopewell, John W. ;
Moulder, John E. .
INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2009, 85 (12) :1089-1100
[5]   A validation of SpekPy: A software toolkit for modelling X-ray tube spectra [J].
Bujila, Robert ;
Omar, Artur ;
Poludniowski, Gavin .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 75 :44-54
[6]   Next-generation imaging of the skeletal system and its blood supply [J].
Grueneboom, Anika ;
Kling, Lasse ;
Christiansen, Silke ;
Mill, Leonid ;
Maier, Andreas ;
Engelke, Klaus ;
Quick, Harald H. ;
Schett, Georg ;
Gunzer, Matthias .
NATURE REVIEWS RHEUMATOLOGY, 2019, 15 (09) :533-549
[7]   Semi-permeable Filters for Interior Region of Interest Dose Reduction in X-ray Microscopy [J].
Huang, Yixing ;
Mill, Leonid ;
Stoll, Robert ;
Kling, Lasse ;
Aust, Oliver ;
Wagner, Fabian ;
Grueneboom, Anika ;
Schett, Georg ;
Christiansen, Silke ;
Maier, Andreas .
BILDVERARBEITUNG FUR DIE MEDIZIN 2021, 2021, :61-66
[8]   Dosimetry concepts for scanner quality assurance and tissue dose assessment in micro-CT [J].
Hupfer, Martin ;
Kolditz, Daniel ;
Nowak, Tristan ;
Eisa, Fabian ;
Brauweiler, Robert ;
Kalender, Willi A. .
MEDICAL PHYSICS, 2012, 39 (02) :658-670
[9]  
Mill L, 2019, P BVM, P251