Permutations minimizing the number of collinear triples

被引:0
作者
Cooper, Joshua [1 ]
Hyatt, Jack [1 ]
机构
[1] Univ South Carolina, Dept Math, 1523 Greene St, Columbia, SC 29201 USA
关键词
Finite affine plane; Collinear triples; Permutations;
D O I
10.1007/s10623-025-01632-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We characterize the permutations of Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document} whose graph minimizes the number of collinear triples and describe the lexicographically-least one, confirming a conjecture of Cooper-Solymosi. This question is connected to Dudeney's No-3-in-a-Line problem, the Heilbronn triangle problem, and the structure of finite plane Kakeya sets. We discuss a connection with complete sets of mutually orthogonal latin squares and state a few open problems primarily about general finite affine planes.
引用
收藏
页数:8
相关论文
共 14 条
[1]  
Blokhuis A, 2008, BOLYAI SOC MATH STUD, V19, P205, DOI 10.1007/978-3-540-85221-6_6
[2]   Collinear points in permutations [J].
Cooper, Joshua N. ;
Solymosi, Jozsef .
ANNALS OF COMBINATORICS, 2005, 9 (02) :169-175
[3]  
Coxeter H. S. M., 1989, Introduction to Geometry, V2nd
[4]  
Dudeney H., 1917, Amusements in Mathematics, P94
[5]  
Erdos P., 1951, J. London Math. Soc., V1, P198
[6]   NO-3-IN-LINE PROBLEM [J].
GUY, RK ;
KELLY, PA .
CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (04) :527-&
[7]   SOME ADVANCES IN NO-3-IN-LINE PROBLEM [J].
HALL, RR ;
JACKSON, TH ;
SUDBERY, A ;
WILD, K .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1975, 18 (03) :336-341
[8]  
Hurkens CAJ., 1985, Eur. J. Comb, V6, P49, DOI [10.1016/S0195-6698(85)80021-4, DOI 10.1016/S0195-6698(85)80021-4]
[9]  
Kamber R., 1976, Untersuchungen uber affine ebenen der ordnung, P9
[10]  
Li L., 2008, Innov. Incid. Geom, V8, P171, DOI [10.2140/iig.2008.8.171, DOI 10.2140/IIG.2008.8.171]