Kähler gradient Ricci solitons with large symmetry

被引:0
作者
Tran, Hung
机构
基金
美国国家科学基金会;
关键词
Ricci flow; Gradient Ricci solitons; Maximal symmetry; ROTATIONAL SYMMETRY; SHRINKING; MANIFOLDS; CLASSIFICATION; CURVATURE; RIGIDITY;
D O I
10.1016/j.aim.2025.110253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g, J, f) be an irreducible non-trivial K & auml;hler gradient Ricci soliton of real dimension 2n. We show that its group of isometries is of dimension at most n2 and the case of equality is characterized. As a consequence, our framework shows the uniqueness of U(n)-invariant K & auml;hler gradient Ricci solitons constructed earlier. There are corollaries regarding the groups of automorphisms or affine transformations and a general version for almost Hermitian GRS. The approach is based on a connection to the geometry of an almost contact metric structure. Published by Elsevier Inc.
引用
收藏
页数:32
相关论文
共 63 条
[11]   On the classification of Kahler-Ricci solitons on Gorenstein del Pezzo surfaces [J].
Cable, Jacob ;
Suss, Hendrik .
EUROPEAN JOURNAL OF MATHEMATICS, 2018, 4 (01) :137-161
[12]  
Cao H-D., 2009, Adv. Lect. Math., P1
[13]  
Cao HD, 1996, ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY, P1
[14]  
Cao HD, 1997, J DIFFER GEOM, V45, P257, DOI 10.4310/jdg/1214459797
[15]  
Cao HD, 2010, J DIFFER GEOM, V85, P175, DOI 10.4310/jdg/1287580963
[16]   The Weyl tensor of gradient Ricci solitons [J].
Cao, Xiaodong ;
Tran, Hung .
GEOMETRY & TOPOLOGY, 2016, 20 (01) :389-436
[17]   On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties [J].
Chave, T ;
Valent, G .
NUCLEAR PHYSICS B, 1996, 478 (03) :758-778
[18]  
Chen Q, 2012, P AM MATH SOC, V140, P4017
[19]   Rotational symmetry of conical Kahler-Ricci solitons [J].
Chodosh, Otis ;
Fong, Frederick Tsz-Ho .
MATHEMATISCHE ANNALEN, 2016, 364 (3-4) :777-792
[20]   THE RICCI FLOW ON THE 2-SPHERE [J].
CHOW, B .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 33 (02) :325-334