Kähler gradient Ricci solitons with large symmetry

被引:0
作者
Tran, Hung
机构
基金
美国国家科学基金会;
关键词
Ricci flow; Gradient Ricci solitons; Maximal symmetry; ROTATIONAL SYMMETRY; SHRINKING; MANIFOLDS; CLASSIFICATION; CURVATURE; RIGIDITY;
D O I
10.1016/j.aim.2025.110253
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g, J, f) be an irreducible non-trivial K & auml;hler gradient Ricci soliton of real dimension 2n. We show that its group of isometries is of dimension at most n2 and the case of equality is characterized. As a consequence, our framework shows the uniqueness of U(n)-invariant K & auml;hler gradient Ricci solitons constructed earlier. There are corollaries regarding the groups of automorphisms or affine transformations and a general version for almost Hermitian GRS. The approach is based on a connection to the geometry of an almost contact metric structure. Published by Elsevier Inc.
引用
收藏
页数:32
相关论文
共 63 条
[1]   A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton [J].
Bamler, Richard H. ;
Cifarelli, Charles ;
Conlon, Ronan J. ;
Deruelle, Alix .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, 34 (02) :377-392
[2]   Two-Dimensional Gradient Ricci Solitons Revisited [J].
Bernstein, Jacob ;
Mettler, Thomas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (01) :78-98
[3]  
Besse A.-L., 1987, RESULTS MATH RELATED, P10
[4]  
Böhm C, 2008, ANN MATH, V167, P1079
[5]  
Boyer C., 2008, Sasakian Geometry
[6]  
Brendle S, 2009, J AM MATH SOC, V22, P287
[7]   Classification of manifolds with weakly 1/4-pinched curvatures [J].
Brendle, Simon ;
Schoen, Richard M. .
ACTA MATHEMATICA, 2008, 200 (01) :1-13
[8]  
Brendle S, 2014, J DIFFER GEOM, V97, P191
[9]  
Brendle Simon., 2012, Inventiones mathematicae, P1
[10]   A family of steady Ricci solitons and Ricci-flat metrics [J].
Buzano, M. ;
Dancer, A. S. ;
Wang, M. .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (03) :611-638