ON AN ANTI-PERIODIC BOUNDARY VALUE PROBLEM FOR A CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL INCLUSION

被引:0
作者
Cernea, Aurelian [1 ,2 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Acad 14, Bucharest 010014, Romania
[2] Acad Romanian Scientists, Ilfov 3, Bucharest 050044, Romania
来源
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS | 2025年 / 94卷
关键词
Fractional derivative; differential inclusion; fixed point; selection;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of solutions for a Caputo-Fabrizio fractional differential inclusion with anti-periodic boundary conditions is investigated. New results are obtained when the right hand side has convex or non convex values.
引用
收藏
页码:45 / 58
页数:14
相关论文
共 20 条
[1]  
Al-Refai M, 2019, Progress in Fractional Differentiation and Applications, V5, P157, DOI [10.18576/pfda/050206, DOI 10.18576/PFDA/050206]
[2]  
[Anonymous], 2016, PROG FRACT DIFFER AP, DOI [DOI 10.18576/PFDA/020101, 10.18576/pfda/020101]
[3]   PROPERTIES OF THE CAPUTO-FABRIZIO FRACTIONAL DERIVATIVE AND ITS DISTRIBUTIONAL SETTINGS [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan ;
Zorica, Dusan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (01) :29-44
[4]  
Aubin J.-P., 1990, SET-VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[5]  
Baleanu D., 2012, Series on Complexity, Nonlinearity and Chaos, V3
[6]  
Benyoub M, 2022, Mathematica Moravica, V26, P49, DOI 10.5937/matmor2202049b
[7]   EXTENSIONS AND SELECTIONS OF MAPS WITH DECOMPOSABLE VALUES [J].
BRESSAN, A ;
COLOMBO, G .
STUDIA MATHEMATICA, 1988, 90 (01) :69-86
[8]  
Caputo M, 1969, Elasticity e dissipazione
[9]  
Caputo M, 2016, Progress in Fractional Differentiation and Applications, V2, P1, DOI [10.18576/pfda/020101, DOI 10.12785/PFDA/010201]
[10]  
Cernea A., 2020, J. Nonlinear Evol. Equ. Appl., P163