HYPERSPECTRAL IMAGE-TEXT COUPLING NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:0
作者
Yang, Jiaqi [1 ]
Du, Bo [2 ,3 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Inst Artificial Intelligence, Sch Comp Sci, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Hubei Key Lab Multimedia & Network Commun Engn, Wuhan 430072, Peoples R China
来源
2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024) | 2024年
基金
中国国家自然科学基金;
关键词
Deep learning; hyperspectral image classification; hyperspectral image-text coupling; transformer;
D O I
10.1109/IGARSS53475.2024.10642712
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Deep learning-based approaches have blossomed in the field of hyperspectral image (HSI) classification. However, most of the existing methods focus only on visual information and ignore textual clues. Textual properties can describe the shape, color, and size of ground objects with a wealth of information and are a great complement to visual features. Therefore, the HSI-Text (HSI-T) coupling network is proposed in this study. Specifically, a geocoder is first designed to encode the geospatial information of the image. Moreover, a textual transformer is introduced to extract the attributes of the language. On the basis of the above structures, an HSI-T coupling network is built to explicitly model visual-textual dependencies. Experimental results on benchmark HSI datasets can verify that the proposed approach can gain better classification accuracy and more fine-grained land cover maps.
引用
收藏
页码:8054 / 8057
页数:4
相关论文
共 12 条
[1]   Deep Ensemble CNN Method Based on Sample Expansion for Hyperspectral Image Classification [J].
Dong, Shuxian ;
Feng, Wei ;
Quan, Yinghui ;
Dauphin, Gabriel ;
Gao, Lianru ;
Xing, Mengdao .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[2]   SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers [J].
Hong, Danfeng ;
Han, Zhu ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]   Multiscale DenseNet Meets With Bi-RNN for Hyperspectral Image Classification [J].
Liang, Lianhui ;
Zhang, Shaoquan ;
Li, Jun .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 :5401-5415
[4]   HyperLoopNet: Hyperspectral image classification using multiscale self-looping convolutional networks [J].
Pande, Shivam ;
Banerjee, Biplab .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 183 :422-438
[5]   Large Kernel Spectral and Spatial Attention Networks for Hyperspectral Image Classification [J].
Sun, Genyun ;
Pan, Zhaojie ;
Zhang, Aizhu ;
Jia, Xiuping ;
Ren, Jinchang ;
Fu, Hang ;
Yan, Kai .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[6]   Beyond the Patchwise Classification: Spectral-Spatial Fully Convolutional Networks for Hyperspectral Image Classification [J].
Xu, Yonghao ;
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON BIG DATA, 2020, 6 (03) :492-506
[7]   Spectral-Spatial Unified Networks for Hyperspectral Image Classification [J].
Xu, Yonghao ;
Zhang, Liangpei ;
Du, Bo ;
Zhang, Fan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (10) :5893-5909
[8]   Overcoming the Barrier of Incompleteness: A Hyperspectral Image Classification Full Model [J].
Yang, Jiaqi ;
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) :14467-14481
[9]   From center to surrounding: An interactive learning framework for hyperspectral image classification [J].
Yang, Jiaqi ;
Du, Bo ;
Zhang, Liangpei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 197 :145-166
[10]   Enhanced Multiscale Feature Fusion Network for HSI Classification [J].
Yang, Jiaqi ;
Wu, Chen ;
Du, Bo ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12) :10328-10347