Future Climate Change Impacts on Extreme Precipitation: Exposure Risks for Urban Populations and Cropland in North China

被引:0
作者
Yu, Changwen [1 ]
Zhang, Wenqian [2 ]
Song, Nan [3 ]
Zhang, Guwei [4 ,5 ]
Yao, Jiajun [6 ]
Xu, Zhiqi [4 ,5 ]
Xiu, Junyi [7 ]
机构
[1] Hebei Climate Ctr, Shijiazhuang, Peoples R China
[2] Chinese Acad Meteorol Sci, Inst Global Change & Polar Res, Beijing, Peoples R China
[3] Yanqing Meteorol Bur, Beijing, Peoples R China
[4] China Meteorol Adm, Inst Urban Meteorol, Beijing, Peoples R China
[5] China Meteorol Adm, Key Lab Urban Meteorol, Beijing, Peoples R China
[6] Shengzhou Meteorol Bur, Shaoxing, Peoples R China
[7] China Meteorol Adm, CMA Earth Syst Modeling & Predict Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
climate risks; exposure assessment; extreme precipitation; North China; SSP-RCP scenarios; TEMPERATURE; RAINFALL; EVENTS;
D O I
10.1002/joc.8902
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
North China faces increasing risks from extreme precipitation under climate change, yet projections integrating socio-economic dynamics with high-resolution climate models remain limited. Leveraging the latest version of the NEX-GDDP-CMIP6 (NASA Earth Exchange Global Daily Downscaled Projections) from NASA (National Aeronautics and Space Administration) and CMIP6 (Coupled Model Intercomparison Project Phase 6) datasets across SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios, this study quantifies future extreme precipitation impacts on urban populations and cropland in two critical periods: 2031-2050 (mid-century) and 2081-2100 (end-century). Through the Multivariable Integrated Evaluation Tool (MVIETool), we demonstrate that NEX-GDDP-CMIP6 reduces regional precipitation biases by 79% compared to CMIP6 (from +133.16 mm/day to -27.00 mm/day), despite persistent uncertainties in extreme intensity indices. Projections reveal a pronounced intensification of extreme precipitation, with R99p (extremely wet day precipitation) increasing by 127%-131% and CDD (consecutive dry days) decreasing by 12%-17% in 2081-2100 under SSP5-8.5, signalling a transition toward wetter conditions. Exposure analyses indicate that 38.24 million citizens (26.32% of the urban population) and 49,900 km2 cropland (5.87% of the area) in North China may face record-breaking precipitation events by the end of the century under SSP5-8.5, primarily concentrated in coastal megacities and the North China Plain. These findings underscore the urgency of scenario-specific adaptation strategies, including 'sponge city' retrofitting in high-exposure zones and precision agriculture tailored to precipitation regime shifts. Our integrated framework advances regional climate risk assessments by reconciling dynamical downscaling limitations with SSP-driven socio-economic uncertainties.
引用
收藏
页数:17
相关论文
共 66 条
[1]   What Caused the Differences between the July 2023 and August 1996 Extreme Rainfall Events in North China under Similar Synoptic Background? [J].
Bao, Xinghua ;
Sun, Jisong ;
Yin, Jinfang ;
Gao, Xiaoyu ;
Li, Feng ;
Liang, Xudong ;
Gu, Haodong ;
Xia, Rudi ;
Li, Mingxin ;
Wu, Chong ;
Feng, Jianing .
JOURNAL OF METEOROLOGICAL RESEARCH, 2024, 38 (05) :861-879
[2]   Constrained CMIP6 projections indicate less warming and a slower increase in water availability across Asia [J].
Chai, Yuanfang ;
Yue, Yao ;
Slater, Louise J. ;
Yin, Jiabo ;
Borthwick, Alistair G. L. ;
Chen, Tiexi ;
Wang, Guojie .
NATURE COMMUNICATIONS, 2022, 13 (01)
[3]   Significant Increase of the Global Population Exposure to Increased Precipitation Extremes in the Future [J].
Chen, Huopo ;
Sun, Jianqi .
EARTHS FUTURE, 2021, 9 (09)
[4]   Global land use for 2015-2100 at 0.05° resolution under diverse socioeconomic and climate scenarios [J].
Chen, Min ;
Vernon, Chris R. ;
Graham, Neal T. ;
Hejazi, Mohamad ;
Huang, Maoyi ;
Cheng, Yanyan ;
Calvin, Katherine .
SCIENTIFIC DATA, 2020, 7 (01)
[5]   Detecting characteristics of extreme precipitation events using regional and satellite-based precipitation gridded datasets over a region in Central Europe [J].
Eini, Mohammad Reza ;
Rahmati, Akbar ;
Salmani, Haniyeh ;
Brocca, Luca ;
Piniewski, Mikolaj .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 852
[6]   Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization [J].
Eyring, Veronika ;
Bony, Sandrine ;
Meehl, Gerald A. ;
Senior, Catherine A. ;
Stevens, Bjorn ;
Stouffer, Ronald J. ;
Taylor, Karl E. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2016, 9 (05) :1937-1958
[7]   Influence of urbanization on hourly extreme precipitation over China [J].
Huang, Xiaowen ;
Wang, Dashan ;
Ziegler, Alan D. ;
Liu, Xiaoping ;
Zeng, Hui ;
Xu, Zhibo ;
Zeng, Zhenzhong .
ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (04)
[8]   Harmonization of global land use change and management for the period 850-2100 (LUH2) for CMIP6 [J].
Hurtt, George C. ;
Chini, Louise ;
Sahajpal, Ritvik ;
Frolking, Steve ;
Bodirsky, Benjamin L. ;
Calvin, Katherine ;
Doelman, Jonathan C. ;
Fisk, Justin ;
Fujimori, Shinichiro ;
Goldewijk, Kees Klein ;
Hasegawa, Tomoko ;
Havlik, Peter ;
Heinimann, Andreas ;
Humpenoeder, Florian ;
Jungclaus, Johan ;
Kaplan, Jed O. ;
Kennedy, Jennifer ;
Krisztin, Tamas ;
Lawrence, David ;
Lawrence, Peter ;
Ma, Lei ;
Mertz, Ole ;
Pongratz, Julia ;
Popp, Alexander ;
Poulter, Benjamin ;
Riahi, Keywan ;
Shevliakova, Elena ;
Stehfest, Elke ;
Thornton, Peter ;
Tubiello, Francesco N. ;
van Vuuren, Detlef P. ;
Zhang, Xin .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (11) :5425-5464
[9]   Cost of high-level flooding as a consequence of climate change driver?: A case study of China's flood-prone regions [J].
Islam, Md. Ziaul ;
Wang, Chao .
ECOLOGICAL INDICATORS, 2024, 160
[10]   Assessment of NEX-GDDP-CMIP6 Downscale Data in Simulating Extreme Precipitation over the Huai River Basin [J].
Jiang, Fushuang ;
Wen, Shanshan ;
Gao, Miaoni ;
Zhu, Aiping .
ATMOSPHERE, 2023, 14 (10)