Prompt-gamma tomographic imaging for range verification in pencil beam-scanning proton therapy

被引:0
作者
Son, J. M. [1 ,6 ]
Oh, G. [4 ]
Lee, J. S. [2 ]
Kim, H. J. [2 ]
Shin, D. S. [4 ]
Jeong, S. H. [5 ]
Cha, H. M.
Lee, H. J. [7 ]
Lee, K. S. [3 ]
Shin, D. H.
Lee, B. R. [2 ]
机构
[1] Seoul Natl Univ Hosp, Dept Radiat Oncol, Seoul, South Korea
[2] Inha Univ Hosp, Dept Radiat Oncol, Incheon, South Korea
[3] Korea Univ, Dept Bioengn, Seoul, South Korea
[4] Natl Canc Ctr, Proton Therapy Ctr, Goyang, South Korea
[5] Inje Univ, Ilsan Paik Hosp, Coll Med Neurosci & Radiosurg, Hybrid Res Ctr,Dept Neurosurg, Goyang, South Korea
[6] KAERI, Environm Radioact Assessment Team, Daejeon, South Korea
[7] ARALE Lab Co Ltd, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Particle identification methods; Particle tracking detectors; COMPTON CAMERA; IN-BEAM; EMISSION; PATIENT; UNCERTAINTIES; SIMULATION; RADIATION; DELIVERY; DESIGN; RAYS;
D O I
10.1088/1748-0221/20/06/P06030
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
This study aimed to develop a prompt-gamma imaging system to verify the range of proton beams. We designed an optimized collimation system and calculated the proton range using the GATE nuclear-medicine simulation toolkit (v. 9.1). An initial system, which was devised using protons without including specific equipment models, was employed to assess proton beams with energy ranges of 80, 90, 100, 110, and 120 MeU. The gamma-camera system design does not interfere with the nozzle structure of the treatment equipment. It consists of a pinhole collimator and a BGO scintillator and has a 100 x 100-pixel array with a 0.5 mm x 0.5-mm pitch. Next, we constructed an entire system using 12 gamma camera systems for prompt-gamma detection. The pinhole collimator was optimized with respect to the 4.4-MeU prompt-gamma energy, considering the detection efficiency and full width at half maximum. Finally, the prompt-gamma rays at 2.2, 4.4, and 6.1 MeU were comparatively analyzed using an in-house program. Based on the simulation results, the pinhole collimator was optimized to a 1-cm height and 3-mm diameter. The peak of the 4.4-MeU prompt gamma and the reconstructed peak point matched within 1 mm for most simulated energies. These results showed that our newly proposed imaging system is capable of accurately monitoring the proton range using specific prompt-gamma energies.
引用
收藏
页数:16
相关论文
共 37 条
[1]   Simulation study of a novel target oriented SPECT design using a variable pinhole collimator [J].
Bae, Seungbin ;
Chun, Jaehee ;
Cha, Hyemi ;
Yeom, Jung Yeol ;
Lee, Kisung ;
Lee, Hakjae .
MEDICAL PHYSICS, 2017, 44 (02) :470-478
[2]   Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study [J].
Biegun, Aleksandra K. ;
Seravalli, Enrica ;
Lopes, Patricia Cambraia ;
Rinaldi, Ilaria ;
Pinto, Marco ;
Oxley, David C. ;
Dendooven, Peter ;
Verhaegen, Frank ;
Parodi, Katia ;
Crespo, Paulo ;
Schaart, Dennis R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (20) :6429-6444
[3]   Real-time prompt gamma monitoring in spot-scanning proton therapy using imaging through a knife-edge-shaped slit [J].
Bom, Victor ;
Joulaeizadeh, Leila ;
Beekman, Freek .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (02) :297-308
[4]   Use of short-lived positron emitters for in-beam and real-time β+ range monitoring in proton therapy [J].
Bongrand, A. ;
Busato, E. ;
Force, P. ;
Martin, F. ;
Montarou, G. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2020, 69 :248-255
[5]   Simulation Study on the Effect of Constant Hole Length of Curved Diverging Collimators for Radiation Monitoring Systems [J].
Cha, Hyemi ;
Leem, Seowung ;
Cho, Kyeyoung ;
Kang, Cheolung ;
Bae, Seungbin ;
Yu, Byeongjae ;
Yeom, Jungyeol ;
Lee, Hakjae ;
Lee, Kisung .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2021, 68 (05) :1135-1143
[6]   Uncertainties in planned dose due to the limited voxel size of the planning CT when treating lung tumors with proton therapy [J].
Espana, Samuel ;
Paganetti, Harald .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (13) :3843-3856
[7]   On the effectiveness of ion range determination from in-beam PET data [J].
Fiedler, Fine ;
Shakirin, Georgy ;
Skowron, Judith ;
Braess, Henning ;
Crespo, Paulo ;
Kunath, Daniela ;
Pawelke, Joerg ;
Poenisch, Falk ;
Enghardt, Wolfgang .
PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (07) :1989-1998
[8]   Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas MD Anderson Cancer Center, Proton Therapy Center, Houston [J].
Gillin, Michael T. ;
Sahoo, Narayan ;
Bues, Martin ;
Ciangaru, George ;
Sawakuchi, Gabriel ;
Poenisch, Falk ;
Arjomandy, Bijan ;
Martin, Craig ;
Titt, Uwe ;
Suzuki, Kazumichi ;
Smith, Alfred R. ;
Zhu, X. Ronald .
MEDICAL PHYSICS, 2010, 37 (01) :154-163
[9]   First experimental verification of prompt gamma imaging with carbon ion irradiation [J].
Idrissi, Aicha Bourkadi ;
Borghi, Giacomo ;
Caracciolo, Anita ;
Riboldi, Christian ;
Carminati, Marco ;
Donetti, Marco ;
Pullia, Marco ;
Savazzi, Simone ;
Camera, Franco ;
Fiorini, Carlo .
SCIENTIFIC REPORTS, 2024, 14 (01)
[10]   Sensitivity study of prompt gamma imaging of scanned beam proton therapy in heterogeneous anatomies [J].
Janssens, Guillaume ;
Smeets, Julien ;
Stappen, Francois Vander ;
Prieels, Damien ;
Clementel, Enrico ;
Hotoiu, Eugen-Lucian ;
Sterpin, Edmond .
RADIOTHERAPY AND ONCOLOGY, 2016, 118 (03) :562-567