Evaluation of multi-feature machine-learning models for analyzing electrochemical signals for drug monitoring

被引:0
作者
Buddhacharya, Sangam [1 ]
Lefevre, Noel [1 ]
Fu, Elain S. [1 ]
Ramsey, Stephen A. [1 ]
机构
[1] Oregon State Univ, Corvallis, OR 97331 USA
来源
15TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, ACM-BCB 2024 | 2024年
基金
美国国家卫生研究院;
关键词
regression; machine-learning; electrochemistry; diagnostics; precision medicine; SALIVA;
D O I
10.1145/3698587.3701387
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Home monitoring of medication levels in saliva promises a "precision medicine" approach for improving management of chronic diseases. However, saliva's high variability poses a signal processing challenge for miniaturized field-use drug assays. In the context of electrochemical detection of the epilepsy medication carbamazepine, we measured the performance of linear univariate, linear multivariate, and machine-learning (kappa-nearest neighbors (KNN), Random Forest (RF), and Gaussian process (GP)) regression models. For model training and testing, we used a large dataset that we generated by electrochemically assaying 246 saliva samples into which carbamazepine had been spiked at defined concentrations. For each sample, we extracted thirteen quantitative features of the voltammogram peak corresponding to the target drug, carbamazepine, and used wrapper feature selection for the multivariate models. We assessed the models using two independent performance measures applied to hold-out data and statistically compared models for test-set performance using permutation testing. The multivariate linear model using multiple analyte (carbamazepine) peak features was significantly more accurate than the best univariate linear model, decreasing relative prediction error by 19.4%. Further, all three machine-learning models outperformed the multivariate linear model, decreasing relative error by 15.9%, 13.9%, and 10.5% for KNN, RF, and GP, respectively. Our findings underscore the importance and benefit of using multivariate machine-learning models for electrochemical measurement of drug levels in saliva.
引用
收藏
页数:9
相关论文
共 20 条
[1]   Performance of at-home self-collected saliva and nasal-oropharyngeal swabs in the surveillance of COVID-19 [J].
Braz-Silva, Paulo H. ;
Mamana, Ana C. ;
Romano, Camila M. ;
Felix, Alvina C. ;
de Paula, Anderson, V ;
Fereira, Noeli E. ;
Buss, Lewis F. ;
Tozetto-Mendoza, Tania R. ;
Caixeta, Rafael A., V ;
Leal, Fabio E. ;
Grespan, Regina M. Z. ;
Bizario, Joao C. S. ;
Ferraz, Andrea B. C. ;
Sapkota, Dipak ;
Giannecchini, Simone ;
To, Kelvin K. ;
Doglio, Alain ;
Mendes-Correa, Maria C. .
JOURNAL OF ORAL MICROBIOLOGY, 2021, 13 (01)
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   NEAREST NEIGHBOR PATTERN CLASSIFICATION [J].
COVER, TM ;
HART, PE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) :21-+
[4]  
Ezekiel M., 1930, METHODS CORRELATION
[5]  
Fu Elain, 2023, Progress on Electrochemical Sensing of Pharmaceutical Drugs in Complex Biofluids, V11, P1, DOI [10.3390/chemosensors11080467, DOI 10.3390/CHEMOSENSORS11080467]
[6]   Therapeutic drug monitoring of antiepileptic drugs: current status and future prospects [J].
Johannessen Landmark, Cecilie ;
Johannessen, Svein I. ;
Patsalos, Philip N. .
EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2020, 16 (03) :227-238
[7]   Wrappers for feature subset selection [J].
Kohavi, R ;
John, GH .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :273-324
[8]   Validation of self-collected buccal swab and saliva as a diagnostic tool for COVID-19 [J].
Ku, Chee Wai ;
Shivani, Durai ;
Kwan, Jacqueline Q. T. ;
Loy, See Ling ;
Erwin, Christina ;
Ko, Karrie K. K. ;
Ng, Xiang Wen ;
Oon, Lynette ;
Thoon, Koh Cheng ;
Kalimuddin, Shirin ;
Chan, Jerry K. Y. .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2021, 104 :255-261
[9]   Electrochemical signal quantification in saliva: investigation of signal analysis methods [J].
Lefevre, Noel ;
Khederlou, Khadijeh ;
Ramsey, Stephen A. ;
Fu, Elain .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2025, 55 (01) :217-229
[10]   Noninvasive wearable electroactive pharmaceutical monitoring for personalized therapeutics [J].
Lin, Shuyu ;
Yu, Wenzhuo ;
Wang, Bo ;
Zhao, Yichao ;
En, Ke ;
Zhu, Jialun ;
Cheng, Xuanbing ;
Zhou, Crystal ;
Lin, Haisong ;
Wang, Zhaoqing ;
Hojaiji, Hannaneh ;
Yeung, Christopher ;
Milla, Carlos ;
Davis, Ronald W. ;
Emaminejad, Sam .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (32) :19017-19025