Identification and multiply robust estimation in causal mediation analysis across principal strata

被引:0
作者
Cheng, Chao [1 ,2 ]
Li, Fan [1 ,2 ]
机构
[1] Yale Sch Publ Hlth, Dept Biostat, 35 Coll St, Suite 200, New Haven, CT 06510 USA
[2] Yale Sch Publ Hlth, Ctr Methods Implementat & Prevent Sci, New Haven, CT 06510 USA
关键词
causal inference; efficient influence function; endogenous subgroups; moderated mediation analysis; natural indirect effect; principal ignorability; STRATIFICATION; INFERENCE;
D O I
10.1093/jrsssb/qkaf037
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider assessing causal mediation in the presence of a posttreatment event (examples include noncompliance, a clinical event, or death). We identify natural mediation effects for the entire study population and for each principal stratum characterized by the joint potential values of the posttreatment event. We derive the efficient influence function for each mediation estimand, which motivates a set of multiply robust estimators for inference. The multiply robust estimators are consistent under four types of misspecifications and are efficient when all nuisance models are correctly specified. We also develop a nonparametric efficient estimator that leverages data-adaptive machine learners to achieve efficient inference and discuss sensitivity methods to address key identification assumptions. We illustrate our methods via simulations and two real data examples.
引用
收藏
页数:22
相关论文
共 49 条
[21]   Eliminating Ambiguous Treatment Effects Using Estimands [J].
Kahan, Brennan C. ;
Cro, Suzie ;
Li, Fan ;
Harhay, Michael O. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2023, 192 (06) :987-994
[22]   Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data [J].
Kang, Joseph D. Y. ;
Schafer, Joseph L. .
STATISTICAL SCIENCE, 2007, 22 (04) :523-539
[23]   SHARP INSTRUMENTS FOR CLASSIFYING COMPLIERS AND GENERALIZING CAUSAL EFFECTS [J].
Kennedy, Edward H. ;
Balakrishnan, Sivaraman ;
G'Sell, Max .
ANNALS OF STATISTICS, 2020, 48 (04) :2008-2030
[24]   A framework for Bayesian nonparametric inference for causal effects of mediation [J].
Kim, Chanmin ;
Daniels, Michael J. ;
Marcus, Bess H. ;
Roy, Jason A. .
BIOMETRICS, 2017, 73 (02) :401-409
[25]  
MacKinnon D. P., 2008, MacKinnon , D. P. ( 2008 ). Introduction to statistical mediation analysis . Mahwah, NJ: Erlbaum.
[26]   On semiparametric estimation of a path-specific effect in the presence of mediator-outcome confounding [J].
Miles, C. H. ;
Shpitser, I ;
Kanki, P. ;
Meloni, S. ;
Tchetgen, E. J. Tchetgen .
BIOMETRIKA, 2020, 107 (01) :159-172
[27]   Quantifying an Adherence Path-Specific Effect of Antiretroviral Therapy in the Nigeria PEPFAR Program [J].
Miles, Caleb H. ;
Shpitser, Ilya ;
Kanki, Phyllis ;
Meloni, Seema ;
Tchetgen, Eric J. Tchetgen .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (520) :1443-1452
[28]   Principal Stratification: A Tool for Understanding Variation in Program Effects Across Endogenous Subgroups [J].
Page, Lindsay C. ;
Feller, Avi ;
Grindal, Todd ;
Miratrix, Luke ;
Somers, Marie-Andree .
AMERICAN JOURNAL OF EVALUATION, 2015, 36 (04) :514-531
[29]   A Two-Stage Joint Modeling Method for Causal Mediation Analysis in the Presence of Treatment Noncompliance [J].
Park, Soojin ;
Kurum, Esra .
JOURNAL OF CAUSAL INFERENCE, 2020, 8 (01) :131-149
[30]   Sensitivity Evaluation of Methods for Estimating Complier Average Causal Mediation Effects to Assumptions [J].
Park, Soojin ;
Palardy, Gregory J. .
JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2020, 45 (04) :475-506