Identification and multiply robust estimation in causal mediation analysis across principal strata

被引:0
作者
Cheng, Chao [1 ,2 ]
Li, Fan [1 ,2 ]
机构
[1] Yale Sch Publ Hlth, Dept Biostat, 35 Coll St, Suite 200, New Haven, CT 06510 USA
[2] Yale Sch Publ Hlth, Ctr Methods Implementat & Prevent Sci, New Haven, CT 06510 USA
关键词
causal inference; efficient influence function; endogenous subgroups; moderated mediation analysis; natural indirect effect; principal ignorability; STRATIFICATION; INFERENCE;
D O I
10.1093/jrsssb/qkaf037
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider assessing causal mediation in the presence of a posttreatment event (examples include noncompliance, a clinical event, or death). We identify natural mediation effects for the entire study population and for each principal stratum characterized by the joint potential values of the posttreatment event. We derive the efficient influence function for each mediation estimand, which motivates a set of multiply robust estimators for inference. The multiply robust estimators are consistent under four types of misspecifications and are efficient when all nuisance models are correctly specified. We also develop a nonparametric efficient estimator that leverages data-adaptive machine learners to achieve efficient inference and discuss sensitivity methods to address key identification assumptions. We illustrate our methods via simulations and two real data examples.
引用
收藏
页数:22
相关论文
共 49 条
[1]   Generalized Causal Mediation Analysis [J].
Albert, Jeffrey M. ;
Nelson, Suchitra .
BIOMETRICS, 2011, 67 (03) :1028-1038
[2]  
Angrist JD, 1996, J AM STAT ASSOC, V91, P444, DOI 10.2307/2291629
[3]  
Bickel P.J., 1993, Efficient and adaptive estimation for semiparametric models
[4]   Improved rates and asymptotic normality for nonparametric neural network estimators [J].
Chen, XH ;
White, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :682-691
[5]  
Chen XY, 2024, ANN APPL STAT, V18, P350, DOI [10.1214/23-AOAS1792, 10.1214/23-aoas1792]
[6]   Multiply robust estimation of principal causal effects with noncompliance and survival outcomes [J].
Cheng, Chao ;
Guo, Yueqi ;
Liu, Bo ;
Wruck, Lisa ;
Li, Fan ;
Li, Fan .
CLINICAL TRIALS, 2024, 21 (05) :553-561
[7]   Is the Product Method More Efficient Than the Difference Method for Assessing Mediation? [J].
Cheng, Chao ;
Spiegelman, Donna ;
Li, Fan .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2023, 192 (01) :84-92
[8]   Estimating the natural indirect effect and the mediation proportion via the product method [J].
Cheng, Chao ;
Spiegelman, Donna ;
Li, Fan .
BMC MEDICAL RESEARCH METHODOLOGY, 2021, 21 (01)
[9]   Double/debiased machine learning for treatment and structural parameters [J].
Chernozhukov, Victor ;
Chetverikov, Denis ;
Demirer, Mert ;
Duflo, Esther ;
Hansen, Christian ;
Newey, Whitney ;
Robins, James .
ECONOMETRICS JOURNAL, 2018, 21 (01) :C1-C68
[10]   Causal Mediation Analysis with Multiple Mediators [J].
Daniel, R. M. ;
De Stavola, B. L. ;
Cousens, S. N. ;
Vansteelandt, S. .
BIOMETRICS, 2015, 71 (01) :1-14