Cardiovascular Risk Estimation in Colombia Using Artificial Intelligence Techniques

被引:0
作者
Agudelo, Jared [1 ]
Bedoya, Oscar [2 ]
Munoz-Velandia, Oscar [3 ]
Belalcazar, Kevin David Rodriguez [2 ]
Ruiz-Morales, Alvaro [4 ]
机构
[1] Univ Libre, Dept Internal Med, Cali, Colombia
[2] Univ Valle, Sch Syst Engn & Comp Sci, Cali, Colombia
[3] Pontificia Univ Javeriana, Hosp Univ San Ignacio, Dept Internal Med, Bogota, Colombia
[4] Pontificia Univ Javeriana, Dept Clin Epidemiol & Biostat, Bogota, Colombia
关键词
artificial intelligence; cardiovascular risk; decision trees; machine learning; neural networks; random forests; support vector machines; ELECTRONIC HEALTH RECORD; CORONARY EVENTS; PREDICTION; DISEASE; MUNSTER; SCORES;
D O I
10.1155/crp/2566839
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: There is no information on the potential of machine learning (ML)-based techniques to improve cardiovascular risk estimation in the Colombian population. This article presents innovative models using five artificial intelligence techniques: neural networks, decision trees, support vector machines, random forests, and Gaussian Bayesian networks.Methods: The research is based on a cohort of 847 patients free of cardiovascular disease at baseline and followed for cardiovascular disease events over 10 years at the Central Military Hospital in Bogot & aacute;, Colombia. To enhance the robustness and reduce the risk of overfitting, model evaluation was conducted using a 5-fold cross-validation on the entire dataset. Discriminatory ability was evaluated with the area under a ROC curve (AUC-ROC) for each ML-based model and the Framingham model.Results: Experimental results showed that the neural network technique had the best discriminative ability to predict cardiovascular events, with an AUC-ROC of 0.69 (CI 95% 0.622-0.759) for unbalanced data and 0.67 (CI 95% 0.601-0.754) for balanced data. Other ML techniques also showed good discriminatory ability with AUC-ROC values between 0.56 and 0.65, superior to that observed for the Framingham model (0.53; CI 95% 0.468-0.607).Conclusion: Our study supports the flexible ML approaches to cardiovascular risk prediction as a way forward for cardiovascular risk assessment in Colombia. Our data even suggest that risk prediction using these techniques could be even more discriminative than widely used risk-stimulation models such as Framingham, adapted to the Colombian population. However, new prospective studies need to validate our data before general implementation.
引用
收藏
页数:13
相关论文
共 34 条
[1]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[2]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[3]   Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the Prospective Cardiovascular Munster (PROCAM) study [J].
Assmann, G ;
Cullen, P ;
Schulte, H .
CIRCULATION, 2002, 105 (03) :310-315
[4]  
Banegas JR, 2006, Revista Espaola de Cardiologa Suplementos, V6, p3G, DOI [10.1016/S1131-3587(06)75324-9, DOI 10.1016/S1131-3587(06)75324-9]
[5]   Predicting cardiovascular risk from national administrative databases using a combined survival analysis and deep learning approach [J].
Barbieri, Sebastiano ;
Mehta, Suneela ;
Wu, Billy ;
Bharat, Chrianna ;
Poppe, Katrina ;
Jorm, Louisa ;
Jackson, Rod .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2022, 51 (03) :933-944
[6]   Derivation, internal validation, and recalibration of a cardiovascular risk score for Latin America and the Caribbean (Globorisk-LAC): A pooled analysis of cohort studies [J].
Carrillo-Larco, Rodrigo M. ;
Stern, Dalia ;
Hambleton, Ian R. ;
Lotufo, Paulo ;
Di Cesare, Mariachiara ;
Hennis, Anselm ;
Ferreccio, Catterina ;
Irazola, Vilma ;
Perel, Pablo ;
Gregg, Edward W. ;
Miranda, J. Jaime ;
Ezzati, Majid ;
Danaei, Goodarz .
LANCET REGIONAL HEALTH-AMERICAS, 2022, 9
[7]   Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study [J].
Commandeur, Frederic ;
Slomka, Piotr J. ;
Goeller, Markus ;
Chen, Xi ;
Cadet, Sebastien ;
Razipour, Aryabod ;
McElhinney, Priscilla ;
Gransar, Heidi ;
Cantu, Stephanie ;
Miller, Robert J. H. ;
Rozanski, Alan ;
Achenbach, Stephan ;
Tamarappoo, Balaji K. ;
Berman, Daniel S. ;
Dey, Damini .
CARDIOVASCULAR RESEARCH, 2020, 116 (14) :2216-2225
[8]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003
[9]   Comparison of the Framingham and Reynolds Risk Scores for Global Cardiovascular Risk Prediction in the Multiethnic Women's Health Initiative [J].
Cook, Nancy R. ;
Paynter, Nina P. ;
Eaton, Charles B. ;
Manson, JoAnn E. ;
Martin, Lisa W. ;
Robinson, Jennifer G. ;
Rossouw, Jacques E. ;
Wassertheil-Smoller, Sylvia ;
Ridker, Paul M. .
CIRCULATION, 2012, 125 (14) :1748-U112
[10]   Value and Limitations of Existing Scores for the Assessment of Cardiovascular Risk A Review for Clinicians [J].
Cooney, Marie Therese ;
Dudina, Alexandra L. ;
Graham, Ian M. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 54 (14) :1209-1227