Fast Charging and Low Temperature Capabilities of Sodium Solid-State Batteries Enabled by Thin NASICON Bilayer Architecture

被引:0
作者
Jaschin, Prem Wicram [1 ,2 ]
Tang, Christopher R. [1 ,2 ]
Wachsman, Eric D. [1 ,2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Maryland Energy Innovat Inst, College Pk, MD 20742 USA
关键词
ELECTROLYTE; NA3ZR2SI2PO12; NA; STABILITY;
D O I
10.1021/acsenergylett.5c00575
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although sodium solid-state batteries have gained tremendous interest in recent years, achieving stable capacities at high current rates has been a major obstacle in realizing them. Here we report the synthesis of flat and thin (37 mu m and down to 18 mu m) dense Zn,Mg-dual doped NASICON electrolyte separator layers in a 3D porous-dense bilayer architecture. The anode was formed by filling the porous layer with sodium metal, attaining seamless contact. Full cells with sodium vanadium phosphate cathodes (with a high areal capacity of 1.8 mAh/cm2) and sodium-infiltrated NASICON-bilayers were cycled at record-high room temperature (22 degrees C) current densities of 10.8 mA/cm2 (6 C), and long-term cycling at 1.7 mA/cm2 (1 C) was demonstrated. Moreover, low-temperature (-10 degrees C) cycling capability was demonstrated at a 0.1 C rate. This electrolyte architecture promises high energy density (up to 286 Wh/kg), room-temperature sodium solid-state batteries without the need for stack pressure further improving commercial viability at the pack level.
引用
收藏
页码:2610 / 2616
页数:7
相关论文
共 44 条
[1]   Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture [J].
Alexander, George V. ;
Shi, Changmin ;
O'Neill, Jon ;
Wachsman, Eric D. .
NATURE MATERIALS, 2023, 22 (09) :1136-1143
[2]   Electrochemical Oxidative Stability of Hydroborate-Based Solid State Electrolytes [J].
Asakura, Ryo ;
Duchene, Leo ;
Kuehnel, Ruben-Simon ;
Remhof, Arndt ;
Hagemann, Hans ;
Battaglia, Corsin .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (09) :6924-6930
[3]   Design principles for enabling an anode-free sodium all-solid-state battery [J].
Deysher, Grayson ;
Oh, Jin An Sam ;
Chen, Yu-Ting ;
Sayahpour, Baharak ;
Ham, So-Yeon ;
Cheng, Diyi ;
Ridley, Phillip ;
Cronk, Ashley ;
Lin, Sharon Wan-Hsuan ;
Qian, Kun ;
Nguyen, Long Hoang Bao ;
Jang, Jihyun ;
Meng, Ying Shirley .
NATURE ENERGY, 2024, 9 (09) :1161-1172
[4]   Solid-State Electrolytes for Sodium Metal Batteries: Recent Status and Future Opportunities [J].
Dong, Yanfeng ;
Wen, Pengchao ;
Shi, Haodong ;
Yu, Yan ;
Wu, Zhong-Shuai .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (05)
[5]   Review of modification strategies in emerging inorganic solid-state electrolytes for lithium, sodium, and potassium batteries [J].
Feng, Xuyong ;
Fang, Hong ;
Wu, Nan ;
Liu, Pengcheng ;
Jena, Puru ;
Nanda, Jagjit ;
Mitlin, David .
JOULE, 2022, 6 (03) :543-587
[6]   Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries [J].
Gao, Xinran ;
Xing, Zheng ;
Wang, Mingyue ;
Nie, Chuanhao ;
Shang, Zhichao ;
Bai, Zhongchao ;
Dou, Shi Xue ;
Wang, Nana .
ENERGY STORAGE MATERIALS, 2023, 60
[7]   TiO2 as Second Phase in Na3Zr2Si2PO12 to Suppress Dendrite Growth in Sodium Metal Solid-State Batteries [J].
Gao, Zhonghui ;
Yang, Jiayi ;
Li, Guanchen ;
Ferber, Thimo ;
Feng, Junrun ;
Li, Yuyu ;
Fu, Haoyu ;
Jaegermann, Wolfram ;
Monroe, Charles W. ;
Huang, Yunhui .
ADVANCED ENERGY MATERIALS, 2022, 12 (09)
[8]   FAST NA+-ION TRANSPORT IN SKELETON STRUCTURES [J].
GOODENOUGH, JB ;
HONG, HYP ;
KAFALAS, JA .
MATERIALS RESEARCH BULLETIN, 1976, 11 (02) :203-220
[9]   High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture [J].
Hitz, Gregory T. ;
McOwen, Dennis W. ;
Zhang, Lei ;
Ma, Zhaohui ;
Fu, Zhezhen ;
Wen, Yang ;
Gong, Yunhui ;
Dai, Jiaqi ;
Hamann, Tanner R. ;
Hu, Liangbing ;
Wachsman, Eric D. .
MATERIALS TODAY, 2019, 22 :50-57
[10]   CRYSTAL-STRUCTURES AND CRYSTAL-CHEMISTRY IN SYSTEM NA1+XZR2SIXP3-XO12 [J].
HONG, HYP .
MATERIALS RESEARCH BULLETIN, 1976, 11 (02) :173-182