Distinct Sources of Char and Soot Black Carbon Aerosols During Winter Haze at Pair Sites in North China: Source Apportionment From Dual-Carbon Isotope Constrained PMF

被引:0
作者
Yang, Xiao-Ying [1 ,2 ]
Cao, Fang [1 ,2 ]
Lin, Yu-Chi [1 ,2 ]
Fan, Mei-Yi [1 ,2 ]
Wu, Chang-Liu [1 ,2 ]
Yu, Ming-Yuan [1 ,2 ]
Song, Wen-Huai [1 ,2 ]
Zhang, Yan-Lin [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Atmospher Environm Ctr, Sch Ecol & Appl Meteorol, Minist Educ,Joint Lab Int Cooperat Climate & Envir, Nanjing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Jiangsu Key Lab Atmospher Environm Monitoring & Po, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
black carbon (BC); char; soot; radiocarbon; stable carbon isotope; ATMOSPHERIC FINE PARTICLES; TIANJIN-HEBEI REGION; ELEMENTAL CARBON; PARTICULATE MATTER; ORGANIC AEROSOLS; EMISSION FACTORS; CHEMICAL-COMPOSITION; MOLECULAR TRACERS; BACKGROUND SITE; SOURCE PROFILES;
D O I
10.1029/2024JD043077
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Char and soot black carbon (BC) are distinct in physicochemical properties and climate effects, but quantitative source apportionment of which in ambient aerosols remains limited. A comparison of char and soot in fine particles in megacity Beijing and its southwest upwind rural site, Gucheng, during winter haze in 2018 was conducted, utilizing dual-carbon isotope constrained positive matrix factorization for source apportionment. BC concentrations in Gucheng were twice those in Beijing, with char accounting for 90% of BC at both sites. Despite similar char/soot ratios, source contributions of char and soot differed significantly between the two sites. Fossil fuel combustion emerged as the major source of char in both Beijing (82.1%) and Gucheng (72.1%), with higher contributions to soot (96.3% and 86.2%, respectively). Heavy oil combustion (51.2%) was the predominant source of char in Beijing, the char/soot values from which had been previously underestimated. Traffic-related sources were identified as the principal contributors to soot in Beijing (51.2%). Residential coal combustion was the largest contributor to both char (35.3%) and soot (47.6%) in Gucheng, whereas biomass burning contributions (similar to 10% higher than Beijing) were also non-negligible. Our findings underscore the issue of elevated BC concentrations in the Beijing-Tianjin-Hebei region during winter haze and the complexity of char and soot sources in urban environments. Accurately quantifying the contributions of various fossil and nonfossil sources to char and soot, and developing comprehensive emission inventories, are essential for improving assessments of BC effects on climate and environment.
引用
收藏
页数:20
相关论文
共 200 条
[1]   Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean [J].
Agnihotri, Rajesh ;
Mandal, T. K. ;
Karapurkar, S. G. ;
Naja, Manish ;
Gadi, Ranu ;
Ahammmed, Y. Nazeer ;
Kumar, Animesh ;
Saud, T. ;
Saxena, M. .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (17) :2828-2835
[2]   Carbonaceous aerosols in an urban tunnel [J].
Ancelet, Travis ;
Davy, Perry K. ;
Trompetter, William J. ;
Markwitz, Andreas ;
Weatherburn, David C. .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (26) :4463-4469
[3]   Seasonal source variability of carbonaceous aerosols at the Rwanda Climate Observatory [J].
Andersson, August ;
Kirillova, Elena N. ;
Decesari, Stefano ;
DeWitt, H. Langley ;
Gasore, Jimmy ;
Potter, Katherine ;
Prinn, Ronald G. ;
Rupakheti, Maheswar ;
Ndikubwimana, Jean de Dieu ;
Nkusi, Julius ;
Safari, Bonfils .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (08) :4561-4573
[4]   Emission of trace gases and aerosols from biomass burning - an updated assessment [J].
Andreae, Meinrat O. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (13) :8523-8546
[5]   Stable isotope compositions, source apportionment and transformation processes of carbonaceous aerosols in PM10 in the urban city of Hyderabad, India [J].
Attri, Pradeep ;
Mani, Devleena ;
Sarkar, Siddhartha ;
Kumar, Sanjeev ;
Hegde, Ashant .
URBAN CLIMATE, 2024, 57
[6]   Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal-optical carbon analyzer [J].
Bao, Mengying ;
Zhang, Yan-Lin ;
Cao, Fang ;
Lin, Yu-Chi ;
Wang, Yuhang ;
Liu, Xiaoyan ;
Zhang, Wenqi ;
Fan, Meiyi ;
Xie, Feng ;
Cary, Robert ;
Dixon, Joshua ;
Zhou, Lihua .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (06) :4053-4068
[7]   Air quality in megacity Delhi affected by countryside biomass burning [J].
Bikkina, Srinivas ;
Andersson, August ;
Kirillova, Elena N. ;
Holmstrand, Henry ;
Tiwari, Suresh ;
Srivastava, A. K. ;
Bisht, D. S. ;
Gustafsson, Orjan .
NATURE SUSTAINABILITY, 2019, 2 (03) :200-205
[8]   Isotopes in pyrogenic carbon: A review [J].
Bird, Michael I. ;
Ascough, Philippa L. .
ORGANIC GEOCHEMISTRY, 2012, 42 (12) :1529-1539
[9]   Source identification and global implications of black carbon [J].
Blanco-Donado, Erika P. ;
Schneider, Ismael L. ;
Artaxo, Paulo ;
Lozano-Osorio, Jesus ;
Portz, Luana ;
Oliveira, Marcos L. S. .
GEOSCIENCE FRONTIERS, 2022, 13 (01)
[10]   Bounding the role of black carbon in the climate system: A scientific assessment [J].
Bond, T. C. ;
Doherty, S. J. ;
Fahey, D. W. ;
Forster, P. M. ;
Berntsen, T. ;
DeAngelo, B. J. ;
Flanner, M. G. ;
Ghan, S. ;
Kaercher, B. ;
Koch, D. ;
Kinne, S. ;
Kondo, Y. ;
Quinn, P. K. ;
Sarofim, M. C. ;
Schultz, M. G. ;
Schulz, M. ;
Venkataraman, C. ;
Zhang, H. ;
Zhang, S. ;
Bellouin, N. ;
Guttikunda, S. K. ;
Hopke, P. K. ;
Jacobson, M. Z. ;
Kaiser, J. W. ;
Klimont, Z. ;
Lohmann, U. ;
Schwarz, J. P. ;
Shindell, D. ;
Storelvmo, T. ;
Warren, S. G. ;
Zender, C. S. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (11) :5380-5552