A new branch-and-bound algorithm for generalized affine multiplicative programming

被引:0
作者
Deng, Yaping [1 ]
Shen, Peiping [1 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Math & Stat, Zhengzhou 450046, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Affine multiplicative programming; Mixed-integer linear programming; Successive linear optimization method; Branch-and-bound; Rectangular contraction rule; OUTER APPROXIMATION ALGORITHM; GLOBAL OPTIMIZATION; SPACE BRANCH;
D O I
10.1007/s10898-025-01519-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we consider a type of affine multiplicative programming (AMP) problem with exponents, which is known to be NP-hard. We initially transform AMP into an equivalent problem (EP) by the logarithmic transformation and the introduction of auxiliary variables. Utilizing a piecewise linear technique, we then develop a mixed-integer linear programming (MILP) relaxation to determine a lower bound for the optimal value of EP. In addition, we propose a successive linear optimization (SLO) method that converges to a KKT point of EP, thereby tightening the upper bound to the optimum of EP. Also, a rectangular contraction rule is introduced to eliminate regions that do not contain the optimal solution of AMP. By combining the MILP relaxation, the SLO method and the rectangular contraction rule, we formulate a new branch-and-bound algorithm for solving EP. Moreover, the convergence and the maximum number of iterations for the algorithm are presented. Finally, numerical experiments are conducted to verify the effectiveness and feasibility of the constructed algorithm.
引用
收藏
页数:26
相关论文
共 47 条
[1]   Multiplicative programming problems: Analysis and efficient point search heuristic [J].
Benson, HP ;
Boger, GM .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1997, 94 (02) :487-510
[2]   An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem [J].
Benson, HP .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (01) :1-24
[3]   Outcome-space cutting-plane algorithm for linear multiplicative programming [J].
Benson, HP ;
Boger, GM .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 104 (02) :301-322
[4]   An outcome space branch and bound-outer approximation algorithm for convex multiplicative programming [J].
Benson, HP .
JOURNAL OF GLOBAL OPTIMIZATION, 1999, 15 (04) :315-342
[5]   Enabling Research through the SCIP Optimization Suite 8.0 [J].
Bestuzheva, Ksenia ;
Besancon, Mathieu ;
Chen, Wei-Kun ;
Chmiela, Antonia ;
Donkiewicz, Tim ;
Van Doornmalen, Jasper ;
Eifler, Leon ;
Gaul, Oliver ;
Gamrath, Gerald ;
Gleixner, Ambros ;
Gottwald, Leona ;
Graczyk, Christoph ;
Halbig, Katrin ;
Hoen, Alexander ;
Hojny, Christopher ;
Van Der Hulst, Rolf ;
Koch, Thorsten ;
Luebbecke, Marco ;
Maher, Stephen J. ;
Matter, Frederic ;
Muehmer, Erik ;
Mueller, Benjamin ;
Pfetsch, Marc E. ;
Rehfeldt, Daniel ;
Schlein, Steffan ;
Schloesser, Franziska ;
Serrano, Felipe ;
Shinano, Yuji ;
Sofranac, Boro ;
Turner, Mark ;
Vigerske, Stefan ;
Wegscheider, Fabian ;
Wellner, Philipp ;
Weninger, Dieter ;
Witzig, Jakob .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2023, 49 (02)
[6]   A linear programming based algorithm to solve a class of optimization problems with a multi-linear objective function and affine constraints [J].
Charkhgard, Hadi ;
Savelsbergh, Martin ;
Talebian, Masoud .
COMPUTERS & OPERATIONS RESEARCH, 2018, 89 :17-30
[7]  
Dennis DF, 1998, FOREST SCI, V44, P421
[8]   GLOBAL OPTIMIZATION ALGORITHMS FOR CHIP LAYOUT AND COMPACTION [J].
DORNEICH, MC ;
SAHINIDIS, NV .
ENGINEERING OPTIMIZATION, 1995, 25 (02) :131-154
[9]   Output-space branch-and-bound reduction algorithm for generalized linear fractional-multiplicative programming problem [J].
Gao, Yuelin ;
Zhang, Bo .
CHAOS SOLITONS & FRACTALS, 2023, 175
[10]   An outcome-space finite algorithm for solving linear multiplicative programming [J].
Gao, Yuelin ;
Xu, Chengxian ;
Yang, Yongjian .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (02) :494-505