Efficient generation of human dendritic cells from induced pluripotent stem cell by introducing a feeder-free expansion step for hematopoietic progenitors

被引:0
作者
Elahi, Zahra [1 ]
Jameson, Vanta [2 ]
Sakkas, Magdaline [2 ]
Butcher, Suzanne Kathryn [1 ]
Mintern, Justine D. [3 ]
Radford, Kristen Jane [4 ]
Wells, Christine Anne [1 ]
机构
[1] Univ Melbourne, Dept Anat & Physiol, Stem Cell Syst, Sch Biomed Sci,Fac Med Dent & Hlth Sci, 30 Royal Parade, Melbourne, Vic 3010, Australia
[2] Univ Melbourne, Dept Microbiol & Immunol, Melbourne Cytometry Platform, Sch Biomed Sci,Fac Med Dent & Hlth Sci, Melbourne, Vic 3010, Australia
[3] Univ Melbourne, Dept Biochem & Pharmacol, Sch Biomed Sci, Fac Med Dent & Hlth Sci, Melbourne, Vic 3010, Australia
[4] Univ Queensland, Mater Res Inst, Translat Res Inst, Woolloongabba, Qld 4102, Australia
基金
英国医学研究理事会;
关键词
cDC; dendritic cell; hematopoietic progenitor; induced pluripotent stem cell; MoDC; IN-VITRO; DIFFERENTIATION; EXPRESSION; RESPONSES; ANTIGEN; DCS;
D O I
10.1093/jleuko/qiaf045
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Dendritic cells (DCs) are rare innate immune cells that are essential regulators of antitumor, antiviral, and vaccine responses by the adaptive immune system. Conventional DCs, particularly the cDC1 subset, are most desired for DC-based immunotherapies, however, it can be difficult to isolate sufficient numbers of primary cells from patients. The most common alternate sources of DC are ex vivo monocyte-derived DC, although patient-derived monocytes are often dysfunctional. Induced pluripotent stem cells (iPSC) offer a promising solution, providing an opportunity for in vitro generating DCs that are suitable for allogenic off-the-shelf batch-manufactured cells. Here, we developed an in vitro protocol designed to maximize the yield of iPSC-derived DC progenitors, with the specific goal of generating cDC1-like cells. The iPSC-DCs subsets generated by our method could be partitioned by cell surface phenotypes of cDC1, cDC2, and DC3, but they were most transcriptionally similar to monocyte-derived DC (MoDC). Stimulated iPSC-DCs generated proinflammatory cytokines, expressed migratory chemokine receptors including CCR7, upregulated co-stimulatory molecules, and induced the proliferation of CD4/CD8 T-cells. Altogether these data indicate that iPSC-derived DCs have the potential to traffic through lymphatic endothelium and engage productively with T-cells. This method offers a promising step toward an expandable source of allogeneic human DCs for future applications. This method uses pluripotent stem cells, introducing an expansion step to generate high-yield conventional dendritic cells that respond to pathogenic ligands with a migratory phenotype, and are capable of stimulating T-cell proliferation.
引用
收藏
页数:13
相关论文
共 50 条
[1]   Robust temporal map of human in vitro myelopoiesis using single-cell genomics [J].
Alsinet, Clara ;
Primo, Maria Nascimento ;
Lorenzi, Valentina ;
Bello, Erica ;
Kelava, Iva ;
Jones, Carla P. ;
Vilarrasa-Blasi, Roser ;
Sancho-Serra, Carmen ;
Knights, Andrew J. ;
Park, Jong-Eun ;
Wyspianska, Beata S. ;
Trynka, Gosia ;
Tough, David F. ;
Bassett, Andrew ;
Gaffney, Daniel J. ;
Alvarez-Errico, Damiana ;
Vento-Tormo, Roser .
NATURE COMMUNICATIONS, 2022, 13 (01)
[2]   Engineered niches support the development of human dendritic cells in humanized mice [J].
Anselmi, Giorgio ;
Vaivode, Kristine ;
Dutertre, Charles-Antoine ;
Bourdely, Pierre ;
Missolo-Koussou, Yoann ;
Newell, Evan ;
Hickman, Oliver ;
Wood, Kristie ;
Saxena, Alka ;
Helft, Julie ;
Ginhoux, Florent ;
Guermonprez, Pierre .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells [J].
Bachem, Annabell ;
Guettler, Steffen ;
Hartung, Evelyn ;
Ebstein, Frederic ;
Schaefer, Michael ;
Tannert, Astrid ;
Salama, Abdulgabar ;
Movassaghi, Kamran ;
Opitz, Corinna ;
Mages, Hans W. ;
Henn, Volker ;
Kloetzel, Peter-Michael ;
Gurka, Stephanie ;
Kroczek, Richard A. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2010, 207 (06) :1273-1281
[4]   Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells [J].
Balan, Sreekumar ;
Ollion, Vincent ;
Colletti, Nicholas ;
Chelbi, Rabie ;
Montanana-Sanchis, Frederic ;
Liu, Hong ;
Thien-Phong Vu Manh ;
Sanchez, Cindy ;
Savoret, Juliette ;
Perrot, Ivan ;
Doffin, Anne-Claire ;
Fossum, Even ;
Bechlian, Didier ;
Chabannon, Christian ;
Bogen, Bjarne ;
Asselin-Paturel, Carine ;
Shaw, Michael ;
Soos, Timothy ;
Caux, Christophe ;
Valladeau-Guilemond, Jenny ;
Dalod, Marc .
JOURNAL OF IMMUNOLOGY, 2014, 193 (04) :1622-1635
[5]  
Bates D., 2005, R. R News, V5, P27
[6]   A method for the generation of large numbers of dendritic cells from CD34+hematopoietic stem cells from cord blood [J].
Bedke, Nicole ;
Swindle, Emily J. ;
Molnar, Camelia ;
Holt, Patrick G. ;
Strickland, Deborah H. ;
Roberts, Graham C. ;
Morris, Ruth ;
Holgate, Stephen T. ;
Davies, Donna E. ;
Blume, Cornelia .
JOURNAL OF IMMUNOLOGICAL METHODS, 2020, 477
[7]   mRNAs, proteins and the emerging principles of gene expression control [J].
Buccitelli, Christopher ;
Selbach, Matthias .
NATURE REVIEWS GENETICS, 2020, 21 (10) :630-644
[8]   Stemformatics: visualize and download curated stem cell data [J].
Choi, Jarny ;
Pacheco, Chris M. ;
Mosbergen, Rowland ;
Korn, Othmar ;
Chen, Tyrone ;
Nagpal, Isha ;
Englart, Steve ;
Angel, Paul W. ;
Wells, Christine A. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D841-D846
[9]   Hematopoietic differentiation and production of mature myeloid cells from human pluripotent stem cells [J].
Choi, Kyung-Dal ;
Vodyanik, Maxim ;
Slukvin, Igor I. .
NATURE PROTOCOLS, 2011, 6 (03) :296-313
[10]   Human dendritic cell subsets: an update [J].
Collin, Matthew ;
Bigley, Venetia .
IMMUNOLOGY, 2018, 154 (01) :3-20