Development of nano hydroxyapatite loaded gellan gum nanocomposite scaffold for the regeneration of bone tissue affected by osteosarcoma

被引:1
作者
Wang, Huaidong [1 ]
Bai, Tao [2 ]
Yusoff, Mahani [3 ]
Khairuddin, Nur Ain Atisya C. M. [4 ]
A'srai, Alina Irwana Muhamad [4 ]
Razali, Mohd Hasmizam [4 ,5 ]
机构
[1] XD Grp Hosp, Dept Orthopaed, Xian 710077, Peoples R China
[2] Yan An Peoples Hosp, Dept Orthoped, Yan An 716000, Peoples R China
[3] Univ Malaysia Kelantan, Fac Bioengn & Technol, Jeli 17600, Kelantan, Malaysia
[4] Univ Malaysia Terengganu, Fac Sci & Marine Environm, Kuala Terengganu 21030, Terengganu, Malaysia
[5] Univ Malaysia Terengganu, Fac Sci & Marine Environm, Adv Nanomat Res Grp, Kuala Terengganu 21030, Terengganu, Malaysia
关键词
Hydroxyapatite; Nanocomposite; Scaffold; Bone tissue; Osteosarcoma; DRUG-DELIVERY; FABRICATION; NANOPARTICLES; DIFFERENTIATION; MINERALIZATION; OSTEOPOROSIS; ALENDRONATE; NANOFIBERS; RELEASE; CELLS;
D O I
10.1016/j.rechem.2025.102208
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Advanced biomaterials play a critical role in promoting bone tissue engineering and regenerative medicine applications. This study aimed to fabricate a biomimetic scaffold incorporating nano-hydroxyapatite (nHA) and gellan gum (GG) for bone tissue repair. Nanocomposite scaffold loaded with nHA nanoparticles within a gellan gum matrix (nHA@GG) was successfully produced using a freeze-drying technique. Characterization by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM) corroborated the successful fabrication of the nHA@GG nanocomposite scaffold. XRD and FTIR analyses verified the phase composition and chemical bonding characteristics of hydroxyapatite, aligning with its successful formation within the scaffold. These findings highlight the potential of the nHA@GG nanocomposite scaffold to facilitate and accelerate apatite growth in in-vitro models. This might be attributed to the presence of nHA, which can act as a nucleation site for secondary apatite layer formation. The nHA@GG scaffold demonstrated efficient encapsulation and drug loading, with 35.48 +/- 0.84 % encapsulation and 25.75 +/- 0.75 % drug loading of sodium alendronate. The cumulative drug release of 38 % was achieved within 4 days. Furthermore, biocompatibility studies utilizing MC3T3 cells demonstrated significant cell proliferation (>100 %) and high cell viability (>90 %) on the nHA@GG scaffold. These findings, coupled with the favorable physicochemical properties and non-toxic nature of the nHA@GG scaffold, highlight its promising potential as a biomaterial for bone tissue regeneration.
引用
收藏
页数:10
相关论文
共 66 条
[11]   Phosphorus-containing SBA-15 materials as bisphosphonate carriers for osteoporosis treatment [J].
Colilla, Montserrat ;
Izquierdo-Barba, Isabel ;
Vallet-Regi, Maria .
MICROPOROUS AND MESOPOROUS MATERIALS, 2010, 135 (1-3) :51-59
[12]   Nano-hydroxyapatite (nHAp) scaffolds for bone regeneration: Preparation, characterization and biological applications [J].
Damiri, Fouad ;
Fatimi, Ahmed ;
Musuc, Adina Magdalena ;
Santos, Ana Claudia Paiva ;
Paszkiewicz, Sandra ;
Idumah, Chistopher Igwe ;
Singh, Sudarshan ;
Varma, Rajender S. ;
Berrada, Mohammed .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2024, 95
[13]   Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation [J].
Das, Bodhisatwa ;
Girigoswami, Agnishwar ;
Dutta, Abir ;
Pal, Pallabi ;
Dutta, Joy ;
Dadhich, Prabhash ;
Srivas, Pavan Kumar ;
Dhara, Santanu .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2019, 5 (07) :3549-3560
[14]   Applications of Nanoscaffolds in Tissue Engineering [J].
Deepika, B. ;
Gopikrishna, A. ;
Girigoswami, Agnishwar ;
Banu, M. Nilofer ;
Girigoswami, Koyeli .
CURRENT PHARMACOLOGY REPORTS, 2022, 8 (03) :171-187
[15]   Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease [J].
Dias, Alexa Magalhaes ;
da Silva, Flavia Gontijo ;
de Figueiredo Monteiro, Ana Paula ;
Pinzon-Garcia, Ana Delia ;
Sinisterra, Ruben D. ;
Cortes, Maria Esperanza .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 103
[16]   3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing [J].
Dong, Qiangsheng ;
Zhang, Ming ;
Zhou, Xingxing ;
Shao, Yi ;
Li, Jiayi ;
Wang, Liming ;
Chu, Chenglin ;
Xue, Feng ;
Yao, Qingqiang ;
Bai, Jing .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 129
[17]   Biomimetic mineralization and cytocompatibility of nanorod hydroxyapatite/graphene oxide composites [J].
Duan, Peizhen ;
Shen, Juan ;
Zou, Guohong ;
Xia, Xu ;
Jin, Bo .
FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2018, 12 (04) :798-805
[18]   Structural and Functional Adaptive Artificial Bone: Materials, Fabrications, and Properties [J].
Feng, Pei ;
Zhao, Rongyang ;
Tang, Weiming ;
Yang, Feng ;
Tian, Haifeng ;
Peng, Shuping ;
Pan, Hao ;
Shuai, Cijun .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (23)
[19]   Hydroxyapatite Nanoparticles as Particulate Emulsifier: Fabrication of Hydroxyapatite-Coated Biodegradable Microspheres [J].
Fujii, Syuji ;
Okada, Masahiro ;
Sawa, Hidekatsu ;
Furuzono, Tsutomu ;
Nakamura, Yoshinobu .
LANGMUIR, 2009, 25 (17) :9759-9766
[20]   A novel hydroxyapatite -Hardystonite nanocomposite ceramic [J].
Gheisari, Hassan ;
Kararnian, Ebrahirn ;
Abdellahi, Majid .
CERAMICS INTERNATIONAL, 2015, 41 (04) :5967-5975