Industrial Alkaline Electrolyzers Enabled by Interface-Engineered Cobalt Oxide Electrodes for High-Efficiency Water Splitting

被引:0
作者
Li, Cheng [1 ,2 ]
Luo, Xuyu [1 ,2 ]
Wang, Ying [1 ,2 ]
Zhu, Mingze [3 ]
Li, Dan [4 ]
Guo, Shiying [1 ,2 ]
Wang, Wei [5 ]
Xu, Xiaoyong [1 ,2 ]
机构
[1] Yangzhou Univ, Sch Phys Sci & Technol, Yangzhou 225002, Jiangsu, Peoples R China
[2] Yangzhou Univ, Interdisciplinary Res Ctr, Yangzhou 225002, Jiangsu, Peoples R China
[3] Jiuchang New Energy Technol Co LTD, Yangzhou 225001, Peoples R China
[4] Jiangsu Trina Green Hydrogen Technol Co LTD, Changzhou 231021, Peoples R China
[5] Beijing Univ Chem Technol, Sch Math & Phys, Dept Phys & Elect, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
alkaline water electrolyzer; cobalt oxide electrode; high current density; hydrogen evolution reaction; interface engineering; HYDROGEN EVOLUTION; ELECTROCATALYSTS; NANOSHEETS; OXIDATION; CO3O4;
D O I
10.1002/advs.202508013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Alkaline (ALK) electrolysis is an important means to generate green hydrogen from water splitting, and its technical advance hinges critically on the breakthrough of catalytic electrodes capable of high current densities at low overpotentials. Here, an efficient and robust hydrogen-evolving electrode is developed, composed of cobalt oxide (Co3O4) nanosheet catalyst with a metal cobalt transition interface on the current-collecting nickel wire mesh substrate. This Co3O4 electrode affords a unique charge avalanche effect at the metal-semiconductor interface to concentrate electron release and thus enables high-current-density hydrogen evolving at 1000 mA cm-2 with only 207 mV overpotential, far outperforming commercial Raney nickel electrode that commonly delivers current densities below 500 mA cm-2 at 300-500 mV overpotentials. An industrial cell-stack electrolyzer utilizing Co3O4 electrodes achieves a consistent current density of 1000 mA cm-2 at a 2.0 V cell voltage, surpassing the operational current density of commercial ALK systems by two to five times (200-500 mA cm-2). A significant enhancement in current output and a minimal deactivation rate of only 0.056 mV h-1 demonstrate the potential of the Co3O4 electrode to replace commercial Raney nickel electrode, thereby substantially improving the hydrogen production efficiency of ALK electrolyzers.
引用
收藏
页数:8
相关论文
共 45 条
[1]  
[Anonymous], 2023, TrendBank, Green hydrogen industry development blue book in China
[2]  
[Anonymous], 2020, GLOBAL RENEWABLES OU
[3]   Sustainable Furfural Biomass Feedstocks Electrooxidation toward Value-Added Furoic Acid with Energy-Saving H2 Fuel Production Using Pt-Decorated Co3O4 Nanospheres [J].
Begildayeva, Talshyn ;
Theerthagiri, Jayaraman ;
Lee, Seung Jun ;
Min, Ahreum ;
Kim, Gyeong-Ah ;
Manickam, Sivakumar ;
Choi, Myong Yong .
ENERGY & ENVIRONMENTAL MATERIALS, 2024, 7 (02)
[4]   DEVELOPMENTS IN ADVANCED ALKALINE WATER ELECTROLYSIS [J].
BOWEN, CT ;
DAVIS, HJ ;
HENSHAW, BF ;
LACHANCE, R ;
LEROY, RL ;
RENAUD, R .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1984, 9 (1-2) :59-66
[5]   Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction [J].
Cao, Zhenming ;
Chen, Qiaoli ;
Zhang, Jiawei ;
Li, Huiqi ;
Jiang, Yaqi ;
Shen, Shouyu ;
Fu, Gang ;
Lu, Bang-an ;
Xie, Zhaoxiong ;
Zheng, Lansun .
NATURE COMMUNICATIONS, 2017, 8 :15131
[6]   Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments [J].
Chatenet, Marian ;
Pollet, Bruno G. ;
Dekel, Dario R. ;
Dionigi, Fabio ;
Deseure, Jonathan ;
Millet, Pierre ;
Braatz, Richard D. ;
Bazant, Martin Z. ;
Eikerling, Michael ;
Staffell, Iain ;
Balcombe, Paul ;
Shao-Horn, Yang ;
Schaefer, Helmut .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4583-4762
[7]   Stability challenges of electrocatalytic oxygen evolution reaction: From mechanistic understanding to reactor design [J].
Chen, Feng-Yang ;
Wu, Zhen-Yu ;
Adler, Zachary ;
Wang, Haotian .
JOULE, 2021, 5 (07) :1704-1731
[8]  
Chen M., 2023, Carbon Energy, V5
[9]   Self-Templated Fabrication of MoNi4/MoO3-X Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution [J].
Chen, Yu-Yun ;
Zhang, Yun ;
Zhang, Xing ;
Tang, Tang ;
Luo, Hao ;
Niu, Shuai ;
Dai, Zhi-Hui ;
Wan, Li-Jun ;
Hu, Jin-Song .
ADVANCED MATERIALS, 2017, 29 (39)
[10]   Electric Strain in Dual Metal Janus Nanosheets Induces Structural Phase Transition for Efficient Hydrogen Evolution [J].
Fu, Yao ;
Shan, Yun ;
Zhou, Gang ;
Long, Liyuan ;
Wang, Longlu ;
Yin, KuiBo ;
Guo, Junhong ;
Shen, Jiancang ;
Liu, Lizhe ;
Wu, Xinglong .
JOULE, 2019, 3 (12) :2955-2967