Interfacial control for uniformly depositing oxide dielectrics in top-gate graphene field-effect transistors

被引:0
作者
Kim, Dong Yeong [1 ]
Rho, Hokyun [1 ]
Lee, Eunyoung [2 ]
Kim, Junwoo [1 ]
Bae, Sukang [2 ]
Kim, Tae-Wook [3 ]
Lee, Sang Hyun [1 ]
机构
[1] Chonnam Natl Univ, Sch Chem Engn, 77 Yongbong Ro, Gwangju 61186, South Korea
[2] Korea Inst Sci & Technol, Inst Adv Composite Mat, Jeonbuk 55324, South Korea
[3] Jeonbuk Natl Univ, LANL JBNU Engn Inst Korea, Dept Flexible & Printable Elect, 567 Baekje Daero, Jeonju 54896, South Korea
关键词
Graphene; Dielectrics; Field-effect transistor; Interfacial layer; Atomic layer deposition; ATOMIC-LAYER-DEPOSITION; HFO2; FILMS; PERFORMANCE; INTEGRATION; GROWTH;
D O I
10.1007/s42823-025-00923-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The distinctive surface characteristics of two-dimensional(2D) materials present a significant challenge when developing heterostructures for electronic or optoelectronic devices. In this study, we present a method for fabricating top-gate graphene field-effect transistors (FETs) by incorporating a metal interlayer between the dielectric and graphene. The deposition of an ultrathin Ti layer facilitates the formation of a uniform HfO2 layer on the graphene surface via atomic layer deposition (ALD). During the ALD process, the Ti layer oxidizes to TiO2, which has a negligible impact on the current flow along the graphene channel. The mobility of graphene in the FET was enhanced in relation to the SiO2-based back-gate FET by modifying the thin HfO2 top-gate dielectric deposited on the Ti interlayer. Furthermore, shifts in the Dirac point and subthreshold swing were markedly reduced owing to the reduction in charge scattering caused by the presence of trap sites at the interface between graphene and SiO2. This route to modulating the interface between 2D material-based heterostructures will provide an opportunity to improve the performance and stability of 2D electronics and optoelectronics.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Seeding Atomic Layer Deposition of High-k Dielectrics on Epitaxial Graphene with Organic Self-Assembled Monolayers [J].
Alaboson, Justice M. P. ;
Wang, Qing Hua ;
Emery, Jonathan D. ;
Lipson, Albert L. ;
Bedzyk, Michael J. ;
Elam, Jeffrey W. ;
Pellin, Michael J. ;
Hersam, Mark C. .
ACS NANO, 2011, 5 (06) :5223-5232
[2]   Hafnium oxide thin film grown by ALD: An XPS study [J].
Barreca, Davide ;
Milanov, Andrian ;
Fischer, Roland A. ;
Devi, Anjana ;
Tondello, Eugenio .
SURFACE SCIENCE SPECTRA, 2007, 14 (01) :34-40
[3]   Length scaling of the Double Gate Tunnel FET with a high-K gate dielectric [J].
Boucart, Kathy ;
Ionescu, Adrian Mihai .
SOLID-STATE ELECTRONICS, 2007, 51 (11-12) :1500-1507
[4]   Printed graphene circuits [J].
Chen, Jian-Hao ;
Ishigami, Masa ;
Jang, Chaun ;
Hines, Daniel R. ;
Fuhrer, Michael S. ;
Williams, Ellen D. .
ADVANCED MATERIALS, 2007, 19 (21) :3623-3627
[5]   Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices [J].
Farmer, Damon B. ;
Golizadeh-Mojarad, Roksana ;
Perebeinos, Vasili ;
Lin, Yu-Ming ;
Tulevski, George S. ;
Tsang, James C. ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (01) :388-392
[6]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[7]   Optimization of HfO2 films for high transconductance back gated graphene transistors [J].
Ganapathi, Kolla Lakshmi ;
Bhat, Navakanta ;
Mohan, Sangeneni .
APPLIED PHYSICS LETTERS, 2013, 103 (07)
[8]   The role of contact resistance in graphene field-effect devices [J].
Giubileo, Filippo ;
Di Bartolomeo, Antonio .
PROGRESS IN SURFACE SCIENCE, 2017, 92 (03) :143-175
[9]  
Glavin NR, 2020, ADV MATER, V32, DOI [10.1002/adma.202070052, 10.1002/adma.201904302]
[10]   Ultrathin Multibridge Channel Transistor Enabled by van der Waals Assembly [J].
Huang, Xiaohe ;
Liu, Chunsen ;
Zeng, Senfeng ;
Tang, Zhaowu ;
Wang, Shuiyuan ;
Chen, Xiaozhang ;
Zhang, David Wei ;
Zhou, Peng .
ADVANCED MATERIALS, 2021, 33 (37)