Effect of clay on dielectric behaviour of TiO2 embedded PVDF nanocomposite for charge storage applications

被引:0
作者
Das, Sachit K. [1 ]
Bharatiya, Debasrita [1 ]
Minz, Sudhir [2 ]
Saraswat, Ritu [3 ]
Swain, Sarat K. [1 ]
机构
[1] Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Odisha, Sambalpur
[2] School of Physics, Sambalpur University, Odisha, Burla
[3] School of Chemistry, University of Hyderabad, Telangana
关键词
Charge storage; Conductivity; Dielectric constant; Nanocomposite;
D O I
10.1016/j.mssp.2025.109480
中图分类号
学科分类号
摘要
The present work involves dielectric properties of PVDF/TiO2 and PVDF/TiO2/Clay nanocomposite synthesized via solution casting technique. The increased nucleation density attributed to PVDF, TiO2 and Cloisite® 30B NPs causes oriented planes that improve the crystallinity of the resultant nanocomposites. The morphological images prove the uniform deposition of TiO2 and Cloisite® 30B NPs in the ternary nanocomposite. Improved roughness of ternary nanocomposite is observed in AFM images causing huge charge-storing properties in the polymer-based nanocomposite. The highest ε' of PVDF/TiO2 and PVDF/TiO2/Clay nanocomposites are achieved as 2 × 103 and 1.4 × 104 at 1 kHz, respectively. The maximum ε′′ of PFTC-6 nanocomposite is found to be 4.04 at 1 kHz. This giant permittivity of the prepared ternary polymer-based nanocomposite could be a great pathway for the electronic industry. The PVDF/TiO2 nanocomposite shows maximum σac conductivity of 5.16 × 10−4 S/m and 5.87 × 10−4 S/m at 1 kHz and 3 MHz, meanwhile the PVDF/TiO2/Clay nanocomposite shows maximum σac conductivity of 3.37 × 10−3 S/m and 5.16 × 10−3 S/m at 1 kHz and 3 MHz, respectively. The high thermal stability and excellent dielectric behaviour of PVDF/TiO2/Clay nanocomposite prove its worth towards high performance in charge storage and electronic applications. © 2025 Elsevier Ltd
引用
收藏
相关论文
共 60 条
[1]  
Bharatiya D., Parhi B., Sahu H., Swain S.K., Factors influencing the dielectric properties of GO/MO nanocomposites, J. Mater. Sci. Mater. Electron., 34, 5, (2023)
[2]  
Ali H.H., Arif M., Habiba U., Khurshid A., Azhar U., Sagir M., Yasin G., Rationally designed Mo-based advanced nanostructured materials for energy storage technologies: advances and prospects, Sustain Mater Technol, (2023)
[3]  
Sharma S., Sudhakara P., Omran A.A.B., Singh J., Ilyas R.A., Recent trends and developments in conducting polymer nanocomposites for multifunctional applications, Polymers, 13, 17, (2021)
[4]  
Gandhimathi S., Krishnan H., Paradesi D., Development of proton-exchange polymer nanocomposite membranes for fuel cell applications, Polym. Polym. Compos., 28, 7, pp. 492-501, (2020)
[5]  
Jeong J.W., Hwang H.S., Choi D., Ma B.C., Jung J., Chang M., Hybrid polymer/metal oxide thin films for high performance, flexible transistors, Micromachines, 11, 3, (2020)
[6]  
Zhang X., Samori P., Graphene/polymer nanocomposites for supercapacitors, ChemNanoMat, 3, 6, pp. 362-372, (2017)
[7]  
Hassan Y.A., Hu H., Current status of polymer nanocomposite dielectrics for high-temperature applications, Compos. Appl. Sci. Manuf., 138, (2020)
[8]  
Kabir E., Khatun M., Nasrin L., Raihan M.J., Rahman M., Pure β-phase formation in polyvinylidene fluoride (PVDF)-carbon nanotube composites, J. Phys. Appl. Phys., 50, 16, (2017)
[9]  
Tang C.W., Li B., Sun L., Lively B., Zhong W.H., The effects of nanofillers, stretching and recrystallization on microstructure, phase transformation and dielectric properties in PVDF nanocomposites, Eur. Polym. J., 48, 6, pp. 1062-1072, (2012)
[10]  
Sahoo G., Sarkar N., Swain S.K., The effect of reduced graphene oxide intercalated hybrid organoclay on the dielectric properties of polyvinylidene fluoride nanocomposite films, Appl. Clay Sci., 162, pp. 69-82, (2018)