Near Optimal Probabilistic Constructions of Frameproof Codes

被引:0
作者
Liu, Miao [1 ]
Ma, Zengjiao [2 ,3 ]
Chong, Shangguan [1 ,4 ]
机构
[1] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
[2] Shandong Univ, State Key Lab Cryptog & Digital Econ Secur, Minist Educ, Qingdao 266237, Shandong, Peoples R China
[3] Shandong Univ, Sch Cyber Sci & Technol, Qingdao 266237, Shandong, Peoples R China
[4] Minist Educ, Frontiers Sci Ctr Nonlinear Expectat, Qingdao 266237, Peoples R China
基金
中国国家自然科学基金;
关键词
Codes; Fingerprint recognition; Vectors; Upper bound; Probabilistic logic; Set theory; Lower bound; Training; Data mining; Artificial intelligence; Frameproof code; cover-free family; hypergraph packing; hypergraph matching; ERDOS MATCHING CONJECTURE; IMPROVED BOUNDS; ALGORITHMS; FAMILIES;
D O I
10.1109/TIT.2025.3558360
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Frameproof codes are a class of secure codes that were originally introduced in the pioneering work of Boneh and Shaw in the context of digital fingerprinting. They can be used to enhance the security and credibility of digital contents. Let M-c,M-l(q) denote the largest cardinality of a q-ary c-frameproof code with length l. Based on an intriguing observation that relates Mc,l(q) to the renowned Erdos Matching Conjecture in extremal set theory, in 2003, Blackburn posed an open problem on the precise value of the limit R-c,R-l=lim(q ->infinity)M(c,l)(q)/q(left perpendicularl/cright perpendicular). By combining several ideas from the probabilistic method, we present a lower bound for M-c,M-l(q) , which, together with an upper bound of Blackburn, completely determines R-c,R-l for all fixed c,l , and resolves the above open problem in the full generality. We also present an improved upper bound for M-c,M-l(q) .
引用
收藏
页码:4137 / 4144
页数:8
相关论文
共 43 条
[1]  
Alon N., 2016, The probabilistic method
[2]   Bounds for separating hash families [J].
Bazrafshan, Marjan ;
Tran Van Trung .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (03) :1129-1135
[3]   A bound on the size of separating hash families [J].
Blackburn, Simon R. ;
Etzion, Tuvi ;
Stinson, Douglas R. ;
Zaverucha, Gregory M. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (07) :1246-1256
[4]   Probabilistic Existence Results for Separable Codes [J].
Blackburn, Simon R. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) :5822-5827
[5]   Traceability codes [J].
Blackburn, Simon R. ;
Etzion, Tuvi ;
Ng, Siaw-Lynn .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (08) :1049-1057
[6]   Frameproof codes [J].
Blackburn, SR .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2003, 16 (03) :499-510
[7]   Collusion-secure fingerprinting for digital data [J].
Boneh, D ;
Shaw, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :1897-1905
[8]   Improved Constructions of Frameproof Codes [J].
Chee, Yeow Meng ;
Zhang, Xiande .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (08) :5449-5453
[9]   Improved bounds on 2-frameproof codes with length 4 [J].
Cheng, Minquan ;
Jiang, Jing ;
Wang, Qiang .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (01) :97-106
[10]   Separable Codes [J].
Cheng, Minquan ;
Ji, Lijun ;
Miao, Ying .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (03) :1791-1803