Second-Order Gradient Estimates for the Porous Medium Equation on Riemannian Manifolds

被引:0
作者
Yang, Jingjing [1 ]
Zhao, Guangwen [1 ]
机构
[1] Wuhan Univ Technol, Sch Math & Stat, Wuhan 430070, Peoples R China
关键词
gradient estimate; porous medium equation; Riemannian manifold; NONLINEAR PARABOLIC EQUATION; POSITIVE SOLUTIONS; HEAT-EQUATION; KERNEL;
D O I
10.3390/math13101683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive second-order gradient estimates for positive solutions of the porous medium equation partial derivative partial derivative tu(x,t)=Delta u(x,t)p,p is an element of 1,1+1n-1 on an n-dimensional Riemannian manifold under certain curvature conditions.
引用
收藏
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 1993, Comm. Anal. Geom
[2]  
ARONSON DG, 1979, CR ACAD SCI A MATH, V288, P103
[3]   ASYMPTOTIC-BEHAVIOR OF THE NON-LINEAR DIFFUSION EQUATION NT = (N-1NX)X [J].
BERRYMAN, JG ;
HOLLAND, CJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (06) :983-987
[4]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[5]   Aronson-Benilan estimates for the porous medium equation under the Ricci flow [J].
Cao, Huai-Dong ;
Zhu, Meng .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04) :729-748
[6]   Gradient estimates for a nonlinear parabolic equation on complete non-compact Riemannian manifolds [J].
Chen, Li ;
Chen, Wenyi .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 35 (04) :397-404
[7]   Gradient estimates and Harnack inequalities of a nonlinear parabolic equation for the V-Laplacian [J].
Chen, Qun ;
Qiu, Hongbing .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2016, 50 (01) :47-64
[9]   Regularity of the free boundary for the porous medium equation [J].
Daskalopoulos, P ;
Hamilton, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (04) :899-965
[10]   WETTING - STATICS AND DYNAMICS [J].
DEGENNES, PG .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :827-863