A subject transfer neural network fuses Generator and Euclidean alignment for EEG-based motor imagery classification

被引:0
作者
Xie, Chengqiang [1 ]
Wang, Li [1 ]
Yang, Jiafeng [1 ]
Guo, Jiaying [1 ]
机构
[1] Guangzhou Univ, Sch Elect & Commun Engn, Guangzhou 510006, Peoples R China
关键词
Brain-computer interface (BCI); Transfer learning (TL); Motor imagery (MI); Electroencephalogram (EEG); Deep Learning (DL); BRAIN-COMPUTER INTERFACES; COMMON SPATIAL-PATTERN; NEUROPLASTICITY; COMMUNICATION; TRIAL; BCI;
D O I
10.1016/j.jneumeth.2025.110483
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Brain-computer interface (BCI) facilitates the connection between human brain and computer, enabling individuals to control external devices indirectly through cognitive processes. Although it has great development prospects, the significant difference in EEG signals among individuals hinders users from further utilizing the BCI system. New method: Addressing this difference and improving BCI classification accuracy remain key challenges. In this paper, we propose a transfer learning model based on deep learning to transfer the data distribution from the source domain to the target domain, named a subject transfer neural network combining the Generator with Euclidean alignment (ST-GENN). It consists of three parts: 1) Align the original EEG signals in the Euclidean space; 2) Send the aligned data to the Generator to obtain the transferred features; 3) Utilize the Convolutionattention-temporal (CAT) classifier to classify the transferred features. Results: The model is validated on BCI competition IV 2a, BCI competition IV 2b and SHU datasets to evaluate its classification performance, and the results are 82.85 %, 86.28 % and 67.2 % for the three datasets, respectively. Comparison with existing methods: The results have been shown to be robust to subject variability, with the average accuracy of the proposed method outperforming baseline algorithms by ranging from 2.03 % to 15.43 % on the 2a dataset, from 0.86 % to 10.16 % on the 2b dataset and from 3.3 % to 17.9 % on the SHU dataset. Conclusions for research articles: The advantage of our model lies in its ability to effectively transfer the experience and knowledge of the source domain data to the target domain, thus bridging the gap between them. Our method can improve the practicability of MI-BCI systems.
引用
收藏
页数:18
相关论文
共 68 条
[1]   Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration [J].
Ajiboye, A. Bolu ;
Willett, Francis R. ;
Young, Daniel R. ;
Memberg, William D. ;
Murphy, Brian A. ;
Miller, Jonathan P. ;
Walter, Benjamin L. ;
Sweet, Jennifer A. ;
Hoyen, Harry A. ;
Keith, Michael W. ;
Peckham, P. Hunter ;
Simeral, John D. ;
Donoghue, John P. ;
Hochberg, Leigh R. ;
Kirsch, Robert F. .
LANCET, 2017, 389 (10081) :1821-1830
[2]   Physics-Informed Attention Temporal Convolutional Network for EEG-Based Motor Imagery Classification [J].
Altaheri, Hamdi ;
Muhammad, Ghulam ;
Alsulaiman, Mansour .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) :2249-2258
[3]   Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review [J].
Altaheri, Hamdi ;
Muhammad, Ghulam ;
Alsulaiman, Mansour ;
Amin, Syed Umar ;
Altuwaijri, Ghadir Ali ;
Abdul, Wadood ;
Bencherif, Mohamed A. ;
Faisal, Mohammed .
NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20) :14681-14722
[4]   Filter bank common spatial pattern algorithm on BCI competition IV Datasets 2a and 2b [J].
Ang, Kai Keng ;
Chin, Zheng Yang ;
Wang, Chuanchu ;
Guan, Cuntai ;
Zhang, Haihong .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[5]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[6]   Optimizing the Channel Selection and Classification Accuracy in EEG-Based BCI [J].
Arvaneh, Mahnaz ;
Guan, Cuntai ;
Ang, Kai Keng ;
Quek, Chai .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (06) :1865-1873
[7]   Brain-computer interfaces for communication and rehabilitation [J].
Chaudhary, Ujwal ;
Birbaumer, Niels ;
Ramos-Murguialday, Ander .
NATURE REVIEWS NEUROLOGY, 2016, 12 (09) :513-525
[8]   High-speed spelling with a noninvasive brain-computer interface [J].
Chen, Xiaogang ;
Wang, Yijun ;
Nakanishi, Masaki ;
Gao, Xiaorong ;
Jung, Tzyy-Ping ;
Gao, Shangkai .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (44) :E6058-E6067
[9]   Harnessing neuroplasticity for clinical applications [J].
Cramer, Steven C. ;
Sur, Mriganka ;
Dobkin, Bruce H. ;
O'Brien, Charles ;
Sanger, Terence D. ;
Trojanowski, John Q. ;
Rumsey, Judith M. ;
Hicks, Ramona ;
Cameron, Judy ;
Chen, Daofen ;
Chen, Wen G. ;
Cohen, Leonardo G. ;
deCharms, Christopher ;
Duffy, Charles J. ;
Eden, Guinevere F. ;
Fetz, Eberhard E. ;
Filart, Rosemarie ;
Freund, Michelle ;
Grant, Steven J. ;
Haber, Suzanne ;
Kalivas, Peter W. ;
Kolb, Bryan ;
Kramer, Arthur F. ;
Lynch, Minda ;
Mayberg, Helen S. ;
McQuillen, Patrick S. ;
Nitkin, Ralph ;
Pascual-Leone, Alvaro ;
Reuter-Lorenz, Patricia ;
Schiff, Nicholas ;
Sharma, Anu ;
Shekim, Lana ;
Stryker, Michael ;
Sullivan, Edith V. ;
Vinogradov, Sophia .
BRAIN, 2011, 134 :1591-1609
[10]   Brain-computer interfaces in neurological rehabilitation [J].
Daly, Janis J. ;
Wolpaw, Jonathan R. .
LANCET NEUROLOGY, 2008, 7 (11) :1032-1043