Fixed point theorem on CATp(0) metric spaces with applications in solving matrix equations and fractional differential equations

被引:0
作者
Sajid, Mohammad [1 ]
Wangwe, Lucas [2 ]
Kalita, Hemanta [3 ]
Kumar, Santosh [4 ]
机构
[1] Qassim Univ, Coll Engn, Dept Mech Engn, Buraydah, Saudi Arabia
[2] Mbeya Univ Sci & Technol, Dept Math, Mbeya, Tanzania
[3] VIT Bhopal Univ, Math Div, Indore Highway, Bhopal 466114, Madhya Pradesh, India
[4] North Eastern Hill Univ, Sch Phys Sci, Dept Math, Shillong 793022, Meghalaya, India
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 05期
关键词
fixed point theorems; CMJ mappings; CAT(p)(0) metric spaces; nonlinear matrix equation; fractional differential equations; CONVERGENCE THEOREMS; EXISTENCE;
D O I
10.3934/math.2025505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aimed to explore fixed point theorems for CMJ generalized mappings in CAT(p)(0) metric spaces. To strengthen the established results, we presented a positive example. In applications, we found the existence of the solution to nonlinear matrix equations, and unique solutions of two scale fractal hybrid fractional differential equations in CAT(p)(0).
引用
收藏
页码:11131 / 11158
页数:28
相关论文
共 46 条
[1]   Analysis of a class of fractal hybrid fractional differential equation with application to a biological model [J].
Abdeljawad, Thabet ;
Sher, Muhammad ;
Shah, Kamal ;
Sarwar, Muhammad ;
Amacha, Inas ;
Alqudah, Manar ;
Al-Jaser, Asma .
SCIENTIFIC REPORTS, 2024, 14 (01)
[2]  
Agarwal R. P., 2018, Fixed point theory in metric spaces, DOI [10.1007/978-981-13-2913-5, DOI 10.1007/978-981-13-2913-5]
[3]  
Atangana A, 2016, Arxiv, DOI [arXiv:1602.03408, 10.48550/arXiv.1602.03408, DOI 10.48550/ARXIV.1602.03408, DOI 10.2298/TSCI160111018A]
[4]  
Banach S., 1922, Fund. Math., V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[5]   On the solution of a nonlinear matrix equation arising in queueing problems [J].
Bini, D ;
Meini, B .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1996, 17 (04) :906-926
[6]   Solving nonlinear matrix equations arising in Tree-Like stochastic processes [J].
Bini, DA ;
Latouche, G ;
Meini, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 366 :39-64
[7]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[8]  
Bridson M.R., 1999, Fundamental Principles of Mathematical Sciences, V319, DOI [DOI 10.1007/978-3-662-12494-9, 10.1007/978-3-662-12494-9]
[10]  
BRUHAT F, 1972, PUBL MATH-PARIS, V41, P5