On Periodicity of Continued Fractions with Partial Quotients in Quadratic Number Fields

被引:0
作者
Wang, Zhaonan [1 ,2 ]
Deng, Yingpu [1 ,2 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Key Lab Math Mechanizat, NCMIS, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
来源
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX | 2024年 / 36卷 / 03期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
10.5802/jtnb.1307
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we fix a real quadratic field K and take an ultimately periodic continued fraction with partial quotients in (9K. We examine the convergence of the sequence and the increase in the sizes of both the numerators and denominators of the convergent fractions. Additionally, we establish necessary and sufficient conditions for a real quartic irrational to possess an ultimately periodic continued fraction that converges to it, with partial quotients belonging to (9K. Finally, we analyze a specific example with K = Q(v/5). By the obtained results, we give a continued fraction expansion algorithm for those real quartic irrationals belonging to a quadratic extension of K whose algebraic conjugates are all real. We prove that the expansion obtained from the algorithm is ultimately periodic and converges to the specified .
引用
收藏
页数:25
相关论文
共 15 条
[1]   Continued fractions and numeration in the Fibonacci base [J].
Bernat, Julien .
DISCRETE MATHEMATICS, 2006, 306 (22) :2828-2850
[2]  
BOMBIERI E., 2007, Heights in Diophantine geometry, V4
[3]   Periodic continued fractions over S-integers in number fields and Skolem's p-adic method [J].
Brock, Bradley W. ;
Elkies, Noam D. ;
Jordan, Bruce W. .
ACTA ARITHMETICA, 2021, 197 (04) :379-420
[4]   CONTINUED FRACTIONS FOR COMPLEX NUMBERS AND VALUES OF BINARY QUADRATIC FORMS [J].
Dani, S. G. ;
Nogueira, Arnaldo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (07) :3553-3583
[5]  
DE LAGRANGE J. L., 1770, Demonstration d'un theoreme d'arithmetique, P123
[6]  
GRAHAM R. L., 1989, Computers in Physics, V3, P106, DOI [10.1063/1.4822863, DOI 10.1063/1.4822863]
[7]  
Hindry M., 2000, Graduate Texts in Mathematics, V201
[8]  
Janusz G. J., 1996, Graduate Studies in Mathematics, V7
[9]  
[姜宇鹏 Jiang Yupeng], 2012, [系统科学与数学, Journal of Systems Science and Mathematical Sciences], V32, P908
[10]  
KHINCHIN A.Y., 1964, Physics Today, V17, P70