Thermal energy storage (TES) has emerged as a significant area of interest for various applications. The concept of latent heat storage enables the storage of substantial energy amounts during phase changes under nearly isothermal conditions, using phase change materials (PCMs). PCM-based TES systems encounter challenges like leakage, driving the development of electrospun phase change fibers (EPCFs) via the electrospinning process to improve PCM containment. Achieving successful fabrication and optimal performance of EPCFs necessitates a thorough investigation into their morphology, surface characteristics, crystallinity, stability, mechanical properties, thermal behavior, and TES capacity. Techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are employed for detailed surface characterization of EPCFs. Besides surface properties, the thermal characteristics of EPCFs, including thermal stability, cycle durability, and TES efficiency, significantly impact their practical utility in various applications. Experimental methods like thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are utilized to analyze their thermal properties. EPCFs have found diverse applications in textiles, thermos-responsive sensors, biomedical systems, and more, showcasing their versatility. Nonetheless, challenges persist in customizing EPCFs for specific applications, addressing PCM leakage, and ensuring optimal performance. This review article extensively explores the characterization methods, applications, and challenges associated with EPCFs in TES systems, offering insights into future research directions and strategies for overcoming existing challenges.