A beta-functionalized porphyrin ligand {H 2 TPP(Phen)}, has been synthesized and subsequently employed as a dibasic tetradentate ligand in synthesizing its vanadyl complex 2-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)-5,10,15,20-tetraphenylporphyrinatooxido-vanadium(IV)[V IV OTPP(Phen)] (1). Comprehensive characterization of the ligand {H 2 TPP(Phen)} and its vanadyl(IV) complex (1) was achieved through various analytical and spectroscopic techniques, including NMR, ultraviolet-visible (UV-vis), EPR, and MALDI-TOF mass spectrometry and elemental analysis. Electrochemical studies indicated that the free base porphyrin {H 2 TPP(Phen)} tends to four successive reduction peaks and two oxidation peaks observed in cyclic voltammetry. In contrast, the metalated complex [V IV OTPP(Phen)] displayed two successive reversible reductions and two oxidation peaks. The synthesized vanadyl(IV)-porphyrin complex (1) was further employed as an efficient and reusable catalyst in an environmentally friendly, one-pot, three-component synthesis of biologically and clinically relevant pyrano[2,3-d]pyrimidine (Ca-Ch, Da-Dg) and 4H-chromene (Ga-Gj, Ha-Hj) heterocycles. Based on the current literature regarding one-pot, multicomponent reactions, two distinct and plausible mechanistic pathways are postulated for these transformations. A detailed mechanistic investigation, including the isolation of intermediates and stepwise reaction analysis, revealed that the type of 1,3-dicarbonyl compound used is pivotal in determining the operative mechanistic pathway in these reactions. The current catalytic protocol developed for the synthesis of pyrano[2,3-d]pyrimidine and 4H-chromene heterocycles presents several advantages over existing methodologies, including the use of an eco-friendly solvent (ethanol), high product yields (up to 97%), shorter reaction time scale (30 min), high turnover frequency (TOF) values (up to 14.7 min-1), and excellent catalyst reusability over five catalytic cycles.