Regional Uncertainty Analysis in the Air-Sea CO2 Flux

被引:0
作者
Gloege, L. [1 ,2 ]
Eisaman, M. D. [1 ,2 ]
机构
[1] Yale Univ, Dept Earth & Planetary Sci, New Haven, CT 06520 USA
[2] Yale Univ, Yale Ctr Nat Carbon Capture, New Haven, CT 06520 USA
关键词
GAS-EXCHANGE; CARBON-CYCLE; OCEAN; MODEL; SYSTEM; TEMPERATURE; CLIMATE; VARIABILITY; PCO(2); ICE;
D O I
10.1029/2024EA004032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Accurate quantification of the ocean carbon sink and its associated uncertainty is critical for guiding international policy efforts and the accurate monitoring, reporting, and verification of marine carbon dioxide removal interventions. Here we use error propagation to break down the uncertainty in air-sea CO2 ${\text{CO}}_{2}$ flux into three primary sources: the gas transfer velocity kw $\left({k}_{w}\right)$, the solubility K0 $\left({K}_{0}\right)$, and the difference in partial pressure of CO2 ${\text{CO}}_{2}$ Delta pCO2 $\left({\Delta }{\text{pCO}}_{2}\right)$ between the ocean and atmosphere. These are further decomposed into uncertainties from the underlying variables (e.g., temperature and salinity used to calculate K0 ${K}_{0}$). We find gas transfer velocity is the dominant term driving uncertainty in the air-sea CO2 ${\text{CO}}_{2}$ flux. K0 ${K}_{0}$ and Delta pCO2 ${\Delta }{\text{pCO}}_{2}$ drive uncertainty near river mouths and eastern boundary upwelling zones, respectively. This methodology provides a foundation for a comprehensive quantification of uncertainty and its underlying drivers. The software used in this study is publicly available (Gloege, 2024, ).
引用
收藏
页数:12
相关论文
共 73 条
[1]   PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies [J].
Aumont, O. ;
Ethe, C. ;
Tagliabue, A. ;
Bopp, L. ;
Gehlen, M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (08) :2465-2513
[2]   Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT [J].
Belmonte Rivas, Maria ;
Stoffelen, Ad .
OCEAN SCIENCE, 2019, 15 (03) :831-852
[3]   Variability in the Global Ocean Carbon Sink From 1959 to 2020 by Correcting Models With Observations [J].
Bennington, Val ;
Gloege, Lucas ;
McKinley, Galen A. .
GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (14)
[4]   Evaluation of an Online Grid-Coarsening Algorithm in a Global Eddy-Admitting Ocean Biogeochemical Model [J].
Berthet, Sarah ;
Seferian, Roland ;
Bricaud, Clement ;
Chevallier, Matthieu ;
Voldoire, Aurore ;
Ethe, Christian .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (06) :1759-1783
[5]   Generation of Non-Linear Technique Based 6 Hourly Wind Reanalysis Products Using SCATSAT-1 and Numerical Weather Prediction Model Outputs [J].
Bhowmick, Suchandra Aich ;
Gupta, Maneesha ;
Chakraborty, Abhisek ;
Agarwal, Neeraj ;
Sharma, Rashmi ;
Ali, Meer Mohammed .
REMOTE SENSING, 2023, 15 (04)
[6]  
Boutin J., 1995, AirWater Gas Transfer, P827
[7]   On the role of climate modes in modulating the air-sea CO2 fluxes in eastern boundary upwelling systems [J].
Brady, Riley X. ;
Lovenduski, Nicole S. ;
Alexander, Michael A. ;
Jacox, Michael ;
Gruber, Nicolas .
BIOGEOSCIENCES, 2019, 16 (02) :329-346
[8]  
Dai Juan, 2024, Journal of Physics: Conference Series, V2718, DOI 10.1088/1742-6596/2718/1/012019
[9]  
Dickson A. G., 2007, PICES SPECIAL PUBLIC, V3, P191, DOI [DOI 10.1159/000331784, 10.25607/OBP-1342]
[10]   Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air-sea CO2 fluxes: Physical climate and atmospheric dust [J].
Doney, Scott C. ;
Lima, Ivan ;
Feely, Richard A. ;
Glover, David M. ;
Lindsay, Keith ;
Mahowald, Natalie ;
Moore, J. Keith ;
Wanninkhof, Rik .
DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2009, 56 (8-10) :640-655