Globally Optimal Max-Min Rate Joint Channel and Power Allocation for Hybrid NOMA-OMA Downlink Systems

被引:0
作者
Sultana, Tanin [1 ]
Dumitrescu, Sorina [1 ]
机构
[1] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4L8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NOMA; Resource management; Bipartite graph; Minimax techniques; Fading channels; Downlink; Channel allocation; Training; Signal processing algorithms; Linear programming; power allocation; user clustering; channel allocation; max-min fairness; bipartite graph matching; NONORTHOGONAL MULTIPLE-ACCESS; EFFICIENT RESOURCE-ALLOCATION; NETWORKS; FAIRNESS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work proposes a globally optimal solution algorithm to the joint power allocation (PA) and channel allocation (CA) problem for downlink hybrid NOMA-OMA systems with the objective of maximizing the minimum user rate. In the hybrid NOMA-OMA scenario, the users are divided into clusters, each cluster shares one channel using NOMA (Non-Orthogonal Multiple Access), while different clusters are assigned channels orthogonally. The optimization problem is converted to the problem of maximizing the user rate under the constraint that all rates be equal. It is further decomposed into PA and CA subproblems, which are solved iteratively. The PA subproblem is handled by first deriving an analytical expression of the total power as a function of the common user rate, and then solving it via bisection search. The CA subproblem keeps the equal-rate assignment fixed and aims to find the CA that minimizes the total power. We prove that the CA subproblem is equivalent to a minimum bipartite graph matching problem, for which efficient algorithms exist. Finally, we demonstrate that the proposed iterative algorithm converges to the globally optimal solution after a finite number of iterations. In addition, we prove that the number of iterations is at most three when the power budget is sufficiently large. Extensive experiments demonstrate the effectiveness of the proposed scheme.
引用
收藏
页码:1674 / 1690
页数:17
相关论文
共 42 条
[1]   Dynamic User Clustering and Power Allocation for Uplink and Downlink Non-Orthogonal Multiple Access (NOMA) Systems [J].
Ali, Md Shipon ;
Tabassum, Hina ;
Hossain, Ekram .
IEEE ACCESS, 2016, 4 :6325-6343
[2]   Non-Orthogonal Multiple Access (NOMA) for Downlink Multiuser MIMO Systems: User Clustering, Beamforming, and Power Allocation [J].
Ali, Shipon ;
Hossain, Ekram ;
Kim, Dong In .
IEEE ACCESS, 2017, 5 :565-577
[3]  
Bertsekas D., 1992, Computational Optimization and Applications, V1, P7, DOI [10.1007/bf00247653, DOI 10.1007/BF00247653]
[4]   A Systematic Review on NOMA Variants for 5G and Beyond [J].
Budhiraja, Ishan ;
Kumar, Neeraj ;
Tyagi, Sudhanshu ;
Tanwar, Sudeep ;
Han, Zhu ;
Piran, Md Jalil ;
Suh, Doug Young .
IEEE ACCESS, 2021, 9 :85573-85644
[5]   Impact of User Pairing on 5G Nonorthogonal Multiple-Access Downlink Transmissions [J].
Ding, Zhiguo ;
Fan, Pingzhi ;
Poor, H. Vincent .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (08) :6010-6023
[6]   Joint User Scheduling and Power Allocation Optimization for Energy-Efficient NOMA Systems With Imperfect CSI [J].
Fang, Fang ;
Zhang, Haijun ;
Cheng, Julian ;
Roy, Sebastien ;
Leung, Victor C. M. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (12) :2874-2885
[7]   Energy-Efficient Resource Allocation for Downlink Non-Orthogonal Multiple Access Network [J].
Fang, Fang ;
Zhang, Haijun ;
Cheng, Julian ;
Leung, Victor C. M. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (09) :3722-3732
[8]  
Han Y, 2018, INT CONF COMPUT NETW, P480, DOI 10.1109/ICCNC.2018.8390269
[9]  
Jain R., 1984, Tech. Rep. TR- 301, P1
[10]   Max-Min Fairness for Beamspace MIMO-NOMA: From Single-Beam to Multi-Beam [J].
Jiao, Ruicheng ;
Dai, Linglong ;
Wang, Wei ;
Lyu, Feng ;
Cheng, Nan ;
Shen, Xuemin .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (02) :739-752