Coefficient Results on Certain Subclasses of Sakaguchi Type Bi-univalent Functions

被引:0
作者
Yee, Lee Chew [1 ]
Darus, Maslina [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2025年 / 18卷 / 02期
关键词
Analytic functions; bi-univalent functions; convolution; Gegenbauer polynomial; Einstein function; Sakaguchi type function; coefficient estimate; Fekete-Szego<spacing diaeresis>;
D O I
10.29020/nybg.ejpam.v18i2.6071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study some subclasses of Sakaguchi type bi-univalent functions associated with Gegenbauer polynomials and Einstein function. We explore certain properties of functions belonging to these subclasses, including coefficient bounds and the Fekete-Szego<spacing diaeresis> functionals. This research generalise and improves the related works of several earlier authors.
引用
收藏
页数:12
相关论文
共 20 条
[1]  
ABRAMOWITZ M, 1972, HDB MATH FUNCTIONS F
[2]   Fekete-Szego Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials [J].
Amourah, Ala ;
Frasin, Basem Aref ;
Abdeljawad, Thabet .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[3]  
Arfken G., 2012, Mathematical Methods for Physicists, V7
[4]  
Brannan D. A., 1979, Proceedings of the NATO Advanced Study Institute Held at University of Durhary New York
[5]  
Das RN., 1977, Indian J. Pure Appl. Math, V8, P864
[6]  
Doman B., 2015, CLASSICAL ORTHOGONAL
[7]  
Duren P. L., 1983, Univalent functions
[8]   Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc [J].
El-Qadeem, Alaa H. ;
Mamon, Mohamed A. ;
Elshazly, Ibrahim S. .
SYMMETRY-BASEL, 2022, 14 (04)
[9]  
Fekete M., 1933, J. Lond. Math. Soc., V89, P85, DOI [10.1112/jlms/s1-8.2.85, DOI 10.1112/JLMS/S1-8.2.85]
[10]  
Jahangiri J M, 2015, Electronic Journal of Mathematical Analysis and Applications, V3, P133