EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies

被引:82
作者
Batzner, Kilian [1 ]
Heckler, Lars [1 ,2 ]
Koenig, Rebecca [1 ]
机构
[1] MVTec Software GmbH, Munich, Germany
[2] Tech Univ Munich, Munich, Germany
来源
2024 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION, WACV 2024 | 2024年
关键词
D O I
10.1109/WACV57701.2024.00020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting anomalies in images is an important task, especially in real-time computer vision applications. In this work, we focus on computational efficiency and propose a lightweight feature extractor that processes an image in less than a millisecond on a modern GPU. We then use a student-teacher approach to detect anomalous features. We train a student network to predict the extracted features of normal, i.e., anomaly-free training images. The detection of anomalies at test time is enabled by the student failing to predict their features. We propose a training loss that hinders the student from imitating the teacher feature extractor beyond the normal images. It allows us to drastically reduce the computational cost of the student-teacher model, while improving the detection of anomalous features. We furthermore address the detection of challenging logical anomalies that involve invalid combinations of normal local features, for example, a wrong ordering of objects. We detect these anomalies by efficiently incorporating an autoencoder that analyzes images globally. We evaluate our method, called EfficientAD, on 32 datasets from three industrial anomaly detection dataset collections. EfficientAD sets new standards for both the detection and the localization of anomalies. At a latency of two milliseconds and a throughput of six hundred images per second, it enables a fast handling of anomalies. Together with its low error rate, this makes it an economical solution for real-world applications and a fruitful basis for future research.
引用
收藏
页码:127 / 137
页数:11
相关论文
共 69 条
[1]   ANOMALIB: A DEEP LEARNING LIBRARY FOR ANOMALY DETECTION [J].
Akcay, Samet ;
Ameln, Dick ;
Vaidya, Ashwin ;
Lakshmanan, Barath ;
Ahuja, Nilesh ;
Genc, Utku .
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, :1706-1710
[2]   GANomaly: Semi-supervised Anomaly Detection via Adversarial Training [J].
Akcay, Samet ;
Atapour-Abarghouei, Amir ;
Breckon, Toby P. .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :622-637
[3]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[4]  
Bailey D, 2012, MACHINE VISION HANDBOOK, VOLS 1-3, P1103, DOI 10.1007/978-1-84996-169-1_25
[5]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[6]   Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images [J].
Baur, Christoph ;
Wiestler, Benedikt ;
Albarqouni, Shadi ;
Navab, Nassir .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 :161-169
[7]   The MVTec 3D-AD Dataset for Unsupervised 3D Anomaly Detection and Localization [J].
Bergmann, Paul ;
Jin, Xin ;
Sattlegger, David ;
Steger, Carsten .
PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 5, 2022, :202-213
[8]   Beyond Dents and Scratches: Logical Constraints in Unsupervised Anomaly Detection and Localization [J].
Bergmann, Paul ;
Batzner, Kilian ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (04) :947-969
[9]   The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection [J].
Bergmann, Paul ;
Batzner, Kilian ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) :1038-1059
[10]   Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings [J].
Bergmann, Paul ;
Fauser, Michael ;
Sattlegger, David ;
Steger, Carsten .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :4182-4191