Quantitative and Qualitative Analysis of Atmospheric Effects on Carbon Steel Corrosion Using an ANN Model

被引:1
作者
Narayana, Pasupuleti L. [1 ]
Tiwari, Saurabh [2 ]
Maurya, Anoop K. [1 ]
Ishtiaq, Muhammad [3 ]
Park, Nokeun [2 ,4 ]
Reddy, Nagireddy Gari Subba [3 ]
机构
[1] Korea Inst Mat Sci, Titanium Dept, Adv Met Div, Chang Won 51508, South Korea
[2] Yeungnam Univ, Sch Mat Sci & Engn, Gyongsan 38541, South Korea
[3] Gyeongsang Natl Univ, Engn Res Inst, Sch Mat Sci & Engn, Virtual Mat Lab, Jinju 52828, South Korea
[4] Yeungnam Univ, Inst Mat Technol, Gyongsan 38541, South Korea
基金
新加坡国家研究基金会;
关键词
atmospheric conditions; corrosion rate; carbon steel; artificial neural network; quantitative estimation; RELATIVE-HUMIDITY; NEURAL-NETWORK; 3C STEEL; PREDICTION; TEMPERATURE; RATES;
D O I
10.3390/met15060607
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study develops an artificial neural network (ANN) model to predict the corrosion rate of carbon steel under a wide range of atmospheric conditions. The model incorporates input variables, including temperature (-3.1-28.2 degrees C), relative humidity (33.3-91.1%), time of wetness (0.003-0.976), precipitation (13-4656 mm), sulfur dioxide (0-68.2 mg/m2<middle dot>d), and chloride concentrations (0 to 359.8 mg/m2<middle dot>d). The model demonstrated excellent predictive capability and reliability, with R2 values of 97.2% and 77.6% for the training and testing datasets, respectively. The model demonstrated a strong predictive performance, with an R2 of 97.2% for the training set and 77.6% for the test set. It achieved a mean absolute error (MAE) of 5.633 mu m/year for training and 18.86 mu m/year for testing, along with a root mean square error (RMSE) of 0.000055, indicating reliable generalization despite the limited dataset size. The analysis showed that the relative humidity had the most significant impact on the corrosion rate. The practical applications of the model extend to optimizing material selection and devising effective maintenance strategies.
引用
收藏
页数:13
相关论文
共 32 条
[1]  
[Anonymous], 2020, ASTM G92 Standard Practice for Characterization of Atmospheric Test Sites
[2]  
[Anonymous], 2012, Corrosion of Metals and Alloys-Corrosivity of Atmospheres-Measurement of Environmental Parameters Affecting Corrosivity of Atmospheres
[3]   A combined neural network and mechanistic approach for the prediction of corrosion rate and yield strength of magnesium-rare earth alloys [J].
Birbilis, N. ;
Cavanaugh, M. K. ;
Sudholz, A. D. ;
Zhu, S. M. ;
Easton, M. A. ;
Gibson, M. A. .
CORROSION SCIENCE, 2011, 53 (01) :168-176
[4]   Influence of environmental factors on atmospheric corrosion in dynamic environment [J].
Cai, Yikun ;
Zhao, Yu ;
Ma, Xiaobing ;
Zhou, Kun ;
Chen, Yuan .
CORROSION SCIENCE, 2018, 137 :163-175
[5]   Role of oxide layer on corrosion resistance and surface conductivity of titanium bipolar plates for proton exchange membrane fuel cell [J].
Chen, Bo ;
Ge, Biao ;
Zhang, Xianglu ;
Yang, Daijun ;
Yang, Peiyong ;
Lu, Wei ;
Min, Junying ;
Ming, Pingwen ;
Zhang, Cunman .
JOURNAL OF POWER SOURCES, 2024, 624
[6]   Annual Atmospheric Corrosion of Carbon Steel Worldwide. An Integration of ISOCORRAG, ICP/UNECE and MICAT Databases [J].
Chico, Belen ;
de la Fuente, Daniel ;
Diaz, Ivan ;
Simancas, Joaquin ;
Morcillo, Manuel .
MATERIALS, 2017, 10 (06)
[7]   Development of an Artificial Neural Network Model to Predict the Tensile Strength of Friction Stir Welding of Dissimilar Materials Using Cryogenic Processes [J].
Cho, Mingoo ;
Gim, Jinsu ;
Kim, Ji Hoon ;
Kang, Sungwook .
APPLIED SCIENCES-BASEL, 2024, 14 (20)
[8]   Holistic model for atmospheric corrosion - Part 1 - Theoretical framework for production, transportation and deposition of marine salts [J].
Cole, IS ;
Paterson, DA ;
Ganther, WD .
CORROSION ENGINEERING SCIENCE AND TECHNOLOGY, 2003, 38 (02) :129-134
[9]   Microstructural, mechanical, and electrochemical analysis of carbon doped AISI carbon steels [J].
Ishtiaq M. ;
Inam A. ;
Tiwari S. ;
Seol J.B. .
Applied Microscopy, 52 (1)
[10]   Reducing experimental dependency: Machine-learning-based prediction of Co effects on the mechanical properties of AlCrFeNiCox high-entropy alloys [J].
Jain, Sandeep ;
Jain, Reliance ;
Wagri, Naresh Kumar ;
Sikarwar, Ajay Singh ;
Khaire, Shweta J. ;
Dewangan, Sheetal Kumar ;
Jeon, Yongho ;
Ahn, Byungmin .
MATERIALS TODAY COMMUNICATIONS, 2025, 44