Predation by nematode-trapping fungus triggers mechanosensory-dependent quiescence in Caenorhabditis elegans

被引:0
作者
Lin, Tzu-Hsiang [1 ,2 ,3 ,5 ,6 ]
Chang, Han-Wen [1 ,4 ]
Tay, Rebecca J. [1 ]
Hsueh, Yen-Ping [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Acad Sinica, Inst Mol Biol, Taipei 115, Taiwan
[2] Acad Sinica, Genome & Syst Biol Degree Program, Taipei 106, Taiwan
[3] Natl Taiwan Univ, Taipei 106, Taiwan
[4] Acad Sinica, Taiwan Int Grad Program, Mol Cell Biol, Taipei 114, Taiwan
[5] Natl Def Med Ctr, Grad Inst Life Sci, Taipei 114, Taiwan
[6] Max Planck Inst Biol Tubingen, Dept Complex Biol Interact, D-72076 Tubingen, Germany
关键词
SLEEP; STRESS; BEHAVIOR; EVOLUTION; CIRCUIT; NEURON; GENE;
D O I
10.1016/j.isci.2025.112792
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Animals exhibit diverse behavioral adaptations to predation, driving coevolution across the Tree of Life. Using Caenorhabditis elegans as a genetic model organism, we investigated how nematodes respond to predation by the nematode-trapping fungus Arthrobotrys oligospora. Fungal trapping induces quiescence in C. elegans, characterized by a rapid cessation of pharyngeal pumping and movement. This quiescence is regulated by the activation of sleep-promoting neurons Anterior Lateral neuron A (ALA) and Ring Interneuron S (RIS), with genetic analyses demonstrating that ALA is essential for inhibiting pharyngeal pumping while both ALA and RIS contribute to movement cessation. Mechanosensation and epidermal growth factor receptor (EGFR) signaling are critical to these responses, demonstrating how prey neurophysiology responds to a sessile predator. These findings shed light on the neuronal and molecular mechanisms of stress-induced behaviors, revealing how fungal traps trigger behavioral responses in prey and advance our understanding of predator-prey dynamics.
引用
收藏
页数:14
相关论文
共 46 条
[1]   Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway [J].
Chen, Sheng-An ;
Lin, Hung-Che ;
Schroeder, Frank C. ;
Hsueh, Yen-Ping .
GENETICS, 2021, 217 (02)
[2]   The cAMP-PKA pathway regulates prey sensing and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora [J].
Chen, Sheng-An ;
Lin, Hung-Che ;
Hsueh, Yen-Ping .
G3-GENES GENOMES GENETICS, 2022, 12 (10)
[3]   Vision Guides Selection of Freeze or Flight Defense Strategies in Mice [J].
De Franceschi, Gioia ;
Vivattanasam, Tipok ;
Saleem, Aman B. ;
Solomon, Samuel G. .
CURRENT BIOLOGY, 2016, 26 (16) :2150-2154
[4]   The cysteine-rich virulence factor NipA of Arthrobotrys flagrans interferes with cuticle integrity of Caenorhabditis elegans [J].
Emser, Jennifer ;
Wernet, Nicole ;
Hetzer, Birgit ;
Wohlmann, Elke ;
Fischer, Reinhard .
NATURE COMMUNICATIONS, 2024, 15 (01)
[5]   C. elegans outside the Petri dish [J].
Frezal, Lise ;
Felix, Marie-Anne .
ELIFE, 2015, 4
[6]   Cellular damage, including wounding, drives C. elegans stress-induced sleep [J].
Goetting, Desiree L. ;
Mansfield, Richard ;
Soto, Rony ;
Van Buskirk, Cheryl .
JOURNAL OF NEUROGENETICS, 2020, 34 (3-4) :430-439
[7]   A microfluidic-induced C. elegans sleep state [J].
Gonzales, Daniel L. ;
Zhou, Jasmine ;
Fan, Bo ;
Robinson, Jacob T. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]  
Goodman Miriam B, 2006, WormBook, P1
[9]   How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli [J].
Goodman, Miriam B. ;
Sengupta, Piali .
GENETICS, 2019, 212 (01) :25-51
[10]   Sleep drive is coupled to tissue damage via shedding of Caenorhabditis elegans EGFR ligand SISS-1 [J].
Hill, Andrew J. ;
Robinson, Bryan ;
Jones, Jesse G. ;
Sternberg, Paul W. ;
Van Buskirk, Cheryl .
NATURE COMMUNICATIONS, 2024, 15 (01)