Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters

被引:0
作者
Safonova, Victoria Y. [1 ,2 ]
Gordeeva, Anna V. [1 ]
Blagodatkin, Anton V. [1 ,2 ]
Pimanov, Dmitry A. [1 ]
Yablokov, Anton A. [1 ,2 ]
Pankratov, Andrey L. [1 ,2 ]
机构
[1] Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin Street, 24, Nizhny Novgorod
[2] Institute for Physics of Microstructures of the Russian Academy of Sciences, Akademicheskaya Street, 7, Nizhny Novgorod
关键词
hafnium; microcalorimeter; neutrino; superconducting transition width; superconductivity; TES;
D O I
10.3762/BJNANO.15.108
中图分类号
学科分类号
摘要
The superconducting properties of 85 nm thick hafnium thin films with a 5 nm thick titanium layer on top have been investigated for three different geometries, that is, a film covering the entire 7 × 7 mm2 chip surface, bridges with a width of 200 μm and length up to 1800 μm, and bridges in the form of squares with sides from 100 to 1000 μm. The bridges were formed by a photolithographic lift-off process and are intended to be used as the main sensing element of a microcalorimeter based on a transition-edge sensor (TES) in experiments to determine the magnetic moment of neutrinos. Based on the measurements of the critical current, the critical temperature, and the width of the superconducting transition, we estimate the energy resolution δE of the TES prototypes, showing that it is possible to fabricate microcalorimeters with δE less than 1 eV using these films. © 2024 Safonova et al.; licensee Beilstein-Institut. License and terms: see end of document.
引用
收藏
页码:1353 / 1361
页数:8
相关论文
共 22 条
[1]  
Rajteri M., Biasotti M., Faverzani M., Ferri E., Filippo R., Gatti F., Giachero A., Monticone E., Nucciotti A., Puiu A., J. Low Temp. Phys, 199, pp. 138-142, (2020)
[2]  
Carter F. W., Hertel S. A., Rooks M. J., McKinsey D. N., Prober D. E., IEEE Trans. Appl. Supercond, 25, pp. 1-7, (2015)
[3]  
Cadeddu M., Donchenko G., Dordei F., Giunti C., Kouzakov K., Lubsandorzhiev B., Studenikin A., Trofimov V., Vyalkov M., Yukhimchuk A.
[4]  
Bandler S. R., Detection of Charged Particles in Superfluid Helium, (1995)
[5]  
Gottardi L., Nagayashi K., Appl. Sci, 11, (2021)
[6]  
Hunacek J., Bock J., Bradford C. M., Butler V., Chang T.-C., Cheng Y.-T., Cooray A., Crites A., Frez C., Hailey-Dunsheath S., Hoscheit B., Kim D. W., Li C.-T., Marrone D., Moncelsi L., Shirokoff E., Steinbach B., Sun G., Trumper I., Turner A., Uzgil B., Weber A., Zemcov M., J. Low Temp. Phys, 193, pp. 893-900, (2018)
[7]  
Kunieda Y., Fukuda D., Ohno M., Takahashi H., Ataka M., Ohkubo M., Hirayama F., Nakazawa M., J. Nucl. Sci. Technol, 41, pp. 144-147, (2004)
[8]  
Manenti L., Pepe C., Sarnoff I., Ibrayev T., Oikonomou P., Knyazev A., Monticone E., Garrone H., Alder F., Fawwaz O., Millar A. J., Mora K. D., Shams H., Arneodo F., Rajteri M., Phys. Rev. Appl, 22, (2024)
[9]  
Galeazzi M., Chen C., Cohn J. L., Gundersen J. O., Nucl. Instrum. Methods Phys. Res., Sect. A, 520, pp. 293-295, (2004)
[10]  
Safonova V. Y., Gordeeva A. V., Blagodatkin A. V., Pimanov D. A., Yablokov A. A., Ermolaeva O. L., Pankratov A. L., Materials, 17, (2023)