Online Pre-Diagnosis of Multiple Faults in Proton Exchange Membrane Fuel Cells by Convolutional Neural Network Based Bi-Directional Long Short-Term Memory Parallel Model with Attention Mechanism

被引:0
作者
Chen, Junyi [1 ]
Ran, Huijun [1 ]
Chen, Ziyang [1 ]
Kwan, Trevor Hocksun [2 ]
Yao, Qinghe [1 ]
机构
[1] Sun Yat sen Univ, Sch Aeronaut & Astronaut, 135 Xingang Xi Rd, Guangzhou 510275, Peoples R China
[2] Sun Yat sen Univ, Sch Adv Energy, 66 Gongchang Rd, Shenzhen 518107, Peoples R China
基金
中国国家自然科学基金;
关键词
polymer electrolyte membrane fuel cells (PEMFC); fault pre-diagnosis; CNN-based Bi-LSTM parallel model with attention mechanism (ConvBLSTM-PMwA); long short-term memory (LSTM); load-varying conditions; fault parameter; WATER MANAGEMENT; RESISTANCE; DESIGN;
D O I
10.3390/en18102669
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Proton exchange membrane fuel cell (PEMFC) fault diagnosis faces two critical limitations: conventional offline methods lack real-time predictive capability, while existing prediction approaches are confined to single fault types. To address these gaps, this study proposes an online multi-fault prediction framework integrating three novel contributions: (1) a sensor fusion strategy leveraging existing thermal/electrochemical measurements (voltage, current, temperature, humidity, and pressure) without requiring embedded stack sensors; (2) a real-time sliding window mechanism enabling dynamic prediction updates every 1 s under variable load conditions; and (3) a modified CNN-based Bi-LSTM parallel model with attention mechanism (ConvBLSTM-PMwA) architecture featuring multi-input multi-output (MIMO) capability for simultaneous flooding/air-starvation detection. Through comparative analysis of different neural architectures using experimental datasets, the optimized ConvBLSTM-PMwA achieved 96.49% accuracy in predicting dual faults 64.63 s pre-occurrence, outperforming conventional LSTM models in both temporal resolution and long-term forecast reliability.
引用
收藏
页数:17
相关论文
共 36 条
[1]  
[Anonymous], 2019, Fuel Cell Technologies Market Report
[2]   Identifying in operando changes in membrane hydration in polymer electrolyte membrane fuel cells using synchrotron X-ray radiography [J].
Banerjee, R. ;
Ge, N. ;
Han, C. ;
Lee, J. ;
George, M. G. ;
Liu, H. ;
Muirhead, D. ;
Shrestha, P. ;
Bazylak, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (20) :9757-9769
[3]   Air Starvation Induced Degradation in Polymer Electrolyte Fuel Cells [J].
Bodner, M. ;
Schenk, A. ;
Salaberger, D. ;
Rami, M. ;
Hochenauer, C. ;
Hacker, V. .
FUEL CELLS, 2017, 17 (01) :18-26
[4]   Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship [J].
Chen, Hui ;
Zhang, Zehui ;
Guan, Cong ;
Gao, Haibo .
ENERGY, 2020, 197
[5]   The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review [J].
Chen, Huicui ;
Zhao, Xin ;
Zhang, Tong ;
Pei, Pucheng .
ENERGY CONVERSION AND MANAGEMENT, 2019, 182 :282-298
[6]   Aging prognosis model of proton exchange membrane fuel cell in different operating conditions [J].
Chen, Kui ;
Laghrouche, Salah ;
Djerdir, Abdesslem .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (20) :11761-11772
[7]   Temperature and humidity management of PEM fuel cell power system using multi-input and multi-output fuzzy method [J].
Chen, Xi ;
Xu, Jianghai ;
Fang, Ye ;
Li, Wenbin ;
Ding, Yuejiao ;
Wan, Zhongmin ;
Wang, Xiaodong ;
Tu, Zhengkai .
APPLIED THERMAL ENGINEERING, 2022, 203
[8]   Polymer electrolyte membrane fuel cell fault diagnosis based on empirical mode decomposition [J].
Damour, Cedric ;
Benne, Michel ;
Grondin-Perez, Brigitte ;
Bessafi, Miloud ;
Hissel, Daniel ;
Chabriat, Jean-Pierre .
JOURNAL OF POWER SOURCES, 2015, 299 :596-603
[9]   Detection of Flooding and Drying inside a PEM Fuel Cell Stack [J].
Debenjak, Andrej ;
Gasperin, Matej ;
Pregelj, Bostjan ;
Atanasijevic-Kunc, Maja ;
Petrovcic, Janko ;
Jovan, Vladimir .
STROJNISKI VESTNIK-JOURNAL OF MECHANICAL ENGINEERING, 2013, 59 (01) :56-64
[10]   Investigating the stability and degradation of hydrogen PEM fuel cell [J].
Dhimish, Mahmoud ;
Vieira, Romenia G. ;
Badran, Ghadeer .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (74) :37017-37028