On the best Sobolev inequalities on Riemannian manifolds with boundaries

被引:0
作者
Zheng, Binbin [1 ]
Yang, Xue [2 ]
Yang, Yali [1 ]
机构
[1] Air Force Engn Univ, Fundamentals Dept, Xian, Peoples R China
[2] Northwest A&F Univ, Coll Sci, Yangling, Peoples R China
关键词
Riemannian manifolds; Sobolev inequalities; best constant; p-Laplacian; critical exponent;
D O I
10.1080/17476933.2025.2485161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $ (M,g) $ (M,g) be a smooth n-dimensional compact Riemannian manifold with totally geodesic boundary $ \partial M $ partial derivative M, $ n\ge 2 $ n >= 2. We prove a sharp Sobolev inequality of $ W<^>{1,p}(M) $ W1,p(M) for all 1<p<n. When p = 2 and $ n\ge 3 $ n >= 3, this inequality was proved by Li-Zhu in [Sharp Sobolev inequalities involving boundary terms. Geom Funct Anal. 1998;8:59-87].
引用
收藏
页数:18
相关论文
共 12 条
[1]  
AUBIN T, 1976, B SCI MATH, V100, P149
[2]   On the best Sobolev inequality [J].
Aubin, T ;
Li, YY .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (04) :353-387
[3]  
Aubin T., 1982, Nonlinear Analysis on Manifolds. Monge-Ampere equations
[4]   The best constants problem in Sobolev inequalities [J].
Druet, O .
MATHEMATISCHE ANNALEN, 1999, 314 (02) :327-346
[5]  
Hebey E., 1996, Lecture Notes in Mathematics, V1635
[6]   Sharp Sobolev inequalities involving boundary terms [J].
Li, YY ;
Zhu, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (01) :59-87
[7]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[8]  
LIONS PL, 1985, REV MAT IBEROAM, V1, P45
[9]   Best constant in Sobolev trace inequalities on the half-space [J].
Nazaret, Bruno .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (10) :1977-1985
[10]   Classification of positive D1,p(RN)-solutions to the critical p-Laplace equation in RN [J].
Sciunzi, Berardino .
ADVANCES IN MATHEMATICS, 2016, 291 :12-23