Rough ideal convergence of sequences in gradual normed linear spaces

被引:0
作者
Kisi, Omer [1 ]
Choudhury, Chiranjib [2 ]
机构
[1] Bartin Univ, Dept Math, TR-74100 Bartin, Turkiye
[2] Tripura Univ, Dept Math, Agartala 799022, India
关键词
Ideal; rough ideal convergence; Ir(G)-limit set; gradual number; gradual normed linear space; STATISTICAL CONVERGENCE; I-CONVERGENCE; OPERATOR; NUMBERS;
D O I
10.2298/FIL2504135K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a non-empty set X, an ideal I represents a family of subsets of X that is closed under taking finite unions and subsets of its elements. Considering X = N, in the present study, we set forth with the new concept of rough I and I & lowast;-convergence in gradual normed linear spaces (GNLS). We produce significant results that present several fundamental features of the notions utilizing Ir(G) and I & lowast;,r(G)-limit set. In the end, we investigate their interrelationships and establish a necessary and sufficient condition for the equivalency of the two notions.
引用
收藏
页码:1135 / 1147
页数:13
相关论文
共 50 条
[1]  
Akçay FG, 2015, BULL MATH ANAL APPL, V7, P17
[2]  
Altinok H, 2012, IRAN J FUZZY SYST, V9, P63
[3]   STATISTICAL EXTENSION OF BOUNDED SEQUENCE SPACE [J].
Altinok, Maya ;
Kucukaslan, Mehmet ;
Kaya, Umutcan .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01) :82-99
[4]  
[Anonymous], 2012, Commun. Comput. Inf. Sci., DOI DOI 10.1007/978-3-642-31718-7_2
[5]  
Antal R., 2021, Ural Math. J., V7, P16
[6]   On Rough Convergence in 2-Normed Spaces and Some Properties [J].
Arslan, Mukaddes ;
Dundar, Erdinc .
FILOMAT, 2019, 33 (16) :5077-5086
[7]  
Aytar S., 2008, Numer. Funct. Anal. Optim., V29, P535
[8]   Rough Statistical Cluster Points [J].
Aytar, Salih .
FILOMAT, 2017, 31 (16) :5295-5304
[9]   Rough convergence of sequences in a cone metric space [J].
Banerjee, Amar Kumar ;
Mondal, Rahul .
JOURNAL OF ANALYSIS, 2019, 27 (04) :1179-1188
[10]   Theory of fuzzy limits [J].
Burgin, M .
FUZZY SETS AND SYSTEMS, 2000, 115 (03) :433-443