CRISPR/Cas-Based Gene Editing Tools for Large DNA Fragment Integration

被引:1
作者
Yang, Shuhan [1 ]
Hu, Guang [2 ,3 ]
Wang, Jianming [3 ]
Song, Jie [1 ,3 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Instrument Sci & Engn, Inst Nano Biomed & Engn, Shanghai 200240, Peoples R China
[2] Hunan Univ, Sch Biomed Sci, Changsha 410082, Hunan, Peoples R China
[3] Chinese Acad Sci, Hangzhou Inst Med, Hangzhou 310022, Peoples R China
基金
中国国家自然科学基金;
关键词
genome editing; CRISPR/Cas; large fragmentknock-in; homology-directed repair; transposase; recombinase; HOMOLOGY-DIRECTED REPAIR; KNOCK-IN; GENOME; CRISPR-CAS9; EFFICIENCY; CLEAVAGE; ENDONUCLEASE; IMPROVES; CELLS; CAS9;
D O I
10.1021/acssynbio.4c00632
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, gene editing technologies have rapidly evolved to enable precise and efficient genomic modification. These strategies serve as a crucial instrument in advancing our comprehension of genetics and treating genetic disorders. Of particular interest is the manipulation of large DNA fragments, notably the insertion of large fragments, which has emerged as a focal point of research in recent years. Nevertheless, the techniques employed to integrate larger gene fragments are frequently confronted with inefficiencies, off-target effects, and elevated costs. It is therefore imperative to develop efficient tools capable of precisely inserting kilobase-sized DNA fragments into mammalian genomes to support genetic engineering, gene therapy, and synthetic biology applications. This review provides a comprehensive overview of methods developed in the past five years for integrating large DNA fragments with a particular focus on burgeoning CRISPR-related technologies. We discuss the opportunities associated with homology-directed repair (HDR) and emerging CRISPR-transposase and CRISPR-recombinase strategies, highlighting their potential to revolutionize gene therapies for complex diseases. Additionally, we explore the challenges confronting these methodologies and outline potential future directions for their improvement with the overarching goal of facilitating the utilization and advancement of tools for large fragment gene editing.
引用
收藏
页码:57 / 71
页数:15
相关论文
共 119 条
[1]   A novel technique for large-fragment knock-in animal production without ex vivo handling of zygotes [J].
Abe, Manabu ;
Nakatsukasa, Ena ;
Natsume, Rie ;
Hamada, Shun ;
Sakimura, Kenji ;
Watabe, Ayako M. ;
Ohtsuka, Toshihisa .
SCIENTIFIC REPORTS, 2023, 13 (01)
[2]   Pronuclear Microinjection during S-Phase Increases the Efficiency of CRISPR-Cas9-Assisted Knockin of Large DNA Donors in Mouse Zygotes [J].
Abe, Takaya ;
Inoue, Ken-ichi ;
Furuta, Yasuhide ;
Kiyonari, Hiroshi .
CELL REPORTS, 2020, 31 (07)
[3]   Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template [J].
Aird, Eric J. ;
Lovendahl, Klaus N. ;
St Martin, Amber ;
Harris, Reuben S. ;
Gordon, Wendy R. .
COMMUNICATIONS BIOLOGY, 2018, 1
[4]   A highly efficient transgene knock-in technology in clinically relevant cell types [J].
Allen, Alexander G. ;
Khan, Samia Q. ;
Margulies, Carrie M. ;
Viswanathan, Ramya ;
Lele, Swarali ;
Blaha, Laura ;
Scott, Sean N. ;
Izzo, Kaitlyn M. ;
Gerew, Alexandra ;
Pattali, Rithu ;
Cochran, Nadire R. ;
Holland, Carl S. ;
Zhao, Amy H. ;
Sherman, Stephen E. ;
Jaskolka, Michael C. ;
Wu, Meng ;
Wilson, Aaron C. ;
Sun, Xiaoqi ;
Ciulla, Dawn M. ;
Zhang, Deric ;
Nelson, Jacqueline D. ;
Zhang, Peisheng ;
Mazzucato, Patrizia ;
Huang, Yan ;
Giannoukos, Georgia ;
Marco, Eugenio ;
Nehil, Michael ;
Follit, John A. ;
Chang, Kai-Hsin ;
Shearman, Mark S. ;
Wilson, Christopher J. ;
Zuris, John A. .
NATURE BIOTECHNOLOGY, 2024, 42 (03) :458-469
[5]   Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing [J].
Anzalone, Andrew, V ;
Gao, Xin D. ;
Podracky, Christopher J. ;
Nelson, Andrew T. ;
Koblan, Luke W. ;
Raguram, Aditya ;
Levy, Jonathan M. ;
Mercer, Jaron A. M. ;
Liu, David R. .
NATURE BIOTECHNOLOGY, 2022, 40 (05) :731-+
[6]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[7]   Improving Precise CRISPR Genome Editing by Small Molecules: Is there a Magic Potion? [J].
Bischoff, Nadja ;
Wimberger, Sandra ;
Maresca, Marcello ;
Brakebusch, Cord .
CELLS, 2020, 9 (05)
[8]   STRAIGHT-IN enables high-throughput targeting of large DNA payloads in human pluripotent stem cells [J].
Blanch-Asensio, Albert ;
Grandela, Catarina ;
Brandao, Karina O. ;
de Korte, Tessa ;
Mei, Hailiang ;
Ariyurek, Yavuz ;
Yiangou, Loukia ;
Mol, Mervyn P. H. ;
van Meer, Berend J. ;
Kloet, Susan L. ;
Mummery, Christine L. ;
Davis, Richard P. .
CELL REPORTS METHODS, 2022, 2 (10)
[9]   Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule [J].
Butt, Haroon ;
Eid, Ayman ;
Ali, Zahir ;
Atia, Mohamed A. M. ;
Mokhtar, Morad M. ;
Hassan, Norhan ;
Lee, Ciaran M. ;
Bao, Gang ;
Mahfouz, Magdy M. .
FRONTIERS IN PLANT SCIENCE, 2017, 8
[10]   Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications [J].
Cao, Xisen ;
Tang, Linlin ;
Song, Jie .
ACS SYNTHETIC BIOLOGY, 2024, 13 (04) :1038-1058