BOF-Net: A Retinal Branch Vein Occlusion Segmentation Diagnostic Network for Fundus Fluorescein Angiography Images

被引:0
作者
Wu, Jiayi [1 ]
Dou, Quansheng [1 ,2 ]
Tang, Huanling [1 ,2 ]
Wang, Lizi [2 ]
机构
[1] Shandong Technol & Business Univ, Sch Informat & Elect Engn, Yantai, Peoples R China
[2] Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai, Peoples R China
来源
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MEDICAL IMAGING AND COMPUTER-AIDED DIAGNOSIS, MICAD 2024 | 2025年 / 1372卷
关键词
Branch retinal vein occlusion; Fundus fluorescein angiography; Deep learning; Computer-assisted diagnosis; Image segmentation;
D O I
10.1007/978-981-96-3863-5_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Branch Retinal Vein Occlusion (BRVO) is a common retinal vascular disease in clinical practice, typically associated with retinal arteriosclerosis. Currently, doctors can only perform subtype diagnosis of patients by visually assessing the size ratio between non-perfused areas and the optic disc in fundus fluorescein angiography (FFA). In recent years, deep learning technology has been widely applied in medical imaging. However, due to the scarcity of retinal vein occlusion imaging data and the lack of publicly available datasets, applying deep learning network models to segment and diagnose the occlusion areas remains challenging. Our goal is to propose a segmentation network model, BOF-Net, based on BRVO imaging data, to segment the non-perfused areas and the optic disc regions in the images and calculate their respective areas, thereby assisting doctors in more accurately performing subtype diagnosis. BOF-Net achieved a Dice coefficient of 85.26% and an accuracy of 93.99% on the BRVO dataset. Compared to other segmentation network models, BOF-Net shows greater potential and effectiveness in the auxiliary diagnosis of BRVO.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 21 条
[1]   Automated Diagnosis of Plus Disease in Retinopathy of Prematurity Using Deep Convolutional Neural Networks [J].
Brown, James M. ;
Campbell, J. Peter ;
Beers, Andrew ;
Chang, Ken ;
Ostmo, Susan ;
Chan, R. V. Paul ;
Dy, Jennifer ;
Erdogmus, Deniz ;
Ioannidis, Stratis ;
Kalpathy-Cramer, Jayashree ;
Chiang, Michael F. .
JAMA OPHTHALMOLOGY, 2018, 136 (07) :803-810
[2]   Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion The 24-Week Results of the VIBRANT Study [J].
Campochiaro, Peter A. ;
Clark, W. Lloyd ;
Boyer, David S. ;
Heier, Jeffrey S. ;
Brown, David M. ;
Vitti, Robert ;
Kazmi, Husain ;
Berliner, Alyson J. ;
Erickson, Kristine ;
Chu, Karen W. ;
Soo, Yuhwen ;
Cheng, Yenchieh ;
Haller, Julia A. .
OPHTHALMOLOGY, 2015, 122 (03) :538-544
[3]  
Chen Y., 2023, 2023 IEEE INT C MED, P1
[4]  
Dai LT, 2024, NAT PROD RES, DOI [10.1038/s41591-023-02702-z, 10.1080/14786419.2024.2394834]
[5]   Using DUCK-Net for polyp image segmentation [J].
Dumitru, Razvan-Gabriel ;
Peteleaza, Darius ;
Craciun, Catalin .
SCIENTIFIC REPORTS, 2023, 13 (01)
[6]   Automated segmentation of choroidal neovascularization on optical coherence tomography angiography images of neovascular age-related macular degeneration patients based on deep learning [J].
Feng, Wei ;
Duan, Meihan ;
Wang, Bingjie ;
Du, Yu ;
Zhao, Yiran ;
Wang, Bin ;
Zhao, Lin ;
Ge, Zongyuan ;
Hu, Yuntao .
JOURNAL OF BIG DATA, 2023, 10 (01)
[7]  
Guo Y., 2024, Adv. Clin. Med., V14, P91
[8]  
Heyang W., 2021, Chin. J. Intell. Sci. Technol, V3
[9]   Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function [J].
Hu, Kai ;
Zhang, Zhenzhen ;
Niu, Xiaorui ;
Zhang, Yuan ;
Cao, Chunhong ;
Xiao, Fen ;
Gao, Xieping .
NEUROCOMPUTING, 2018, 309 :179-191
[10]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965