Design of a wideband non-uniform microstrip line for complex impedance matching at automotive radar frequency

被引:0
作者
Zhang Shuang-Gen [1 ]
Yu Tao [1 ]
Wang Yu-Lan [1 ]
Cheng Zhi-Hua [1 ,2 ]
Yao Jian-Quan [2 ]
机构
[1] Tianjin Univ Technol, Sch Integrated Circuit Sci & Engn, Tianjin Key Lab Film Elect & Commun Devices, Tianjin 300384, Peoples R China
[2] Tianjin Univ, Inst Laser Opto Elect, Tianjin 300191, Peoples R China
基金
中国国家自然科学基金;
关键词
millimeter wave; gradient line; wavy transmission line; broadband; high gain array antenna; SIDELOBE LEVEL; ANTENNA;
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Microstrip transmission lines connecting to the millimeter wave radar chip and antenna significantly impact on the radiation efficiency and bandwidth of the antenna. Here,a wideband non-uniform wavy microstrip line for complex impedance in automotive radar frequency range is proposed. Different to the gradient transmission line,the wavy structure is composed of periodically semi-circular segments. By adjusting the radius of the semi-circular,the surface current is varied and concentrated on the semi-circular segments,allowing a wider tun. ability range of the resonant frequency. The results reveal that the bandwidth of the loaded wavy transmission line antenna improves up to 9.37 GHz, which is 5.81 GHz wider than that of the loaded gradient line. The gain and the half power beam width of the loaded antenna are about 14.69 dB and 9.58 degrees, respectively. The proposed non-uniform microstrip line scheme may open up a route for realizing wideband millimeter-wave automotive radar applications.
引用
收藏
页数:10
相关论文
共 21 条
[1]   Efficient Millimeter-Wave Antenna Based on the Exploitation of Microstrip Line Discontinuity Radiation [J].
Al-Alem, Yazan ;
Kishk, Ahmed A. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (06) :2844-2852
[2]  
Ali Mohamed Mamdouh M., 2022, 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), P619, DOI 10.1109/AP-S/USNC-URSI47032.2022.9886629
[3]   Performance Analysis of Highly Efficient Two-Port MIMO Antenna for 5G Wearable Applications [J].
Anbarasu, Muthumanickam ;
Nithiyanantham, Janakiraman .
IETE JOURNAL OF RESEARCH, 2023, 69 (06) :3594-3603
[4]  
Chosh S, 2019, IEEE Access, V7, P83137
[5]   Compact Wearable Antenna with Metasurface for Millimeter-Wave Radar Applications [J].
de Cos Gomez, Maria Elena ;
Alvarez, Humberto Fernandez ;
Berdasco, Alicia Florez ;
Andres, Fernando Las-Heras .
MATERIALS, 2023, 16 (07)
[6]   Series-Fed Millimeter-Wave Antenna Array Based on Microstrip Line Structure [J].
Joseph, Sumin David ;
Ball, Edward A. .
IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION, 2023, 4 :254-261
[7]  
Lee JG, 2017, 2017 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP 2017)
[8]   Design of Comb-Line Array Antenna for Low Sidelobe Level in Millimeter-Wave Band [J].
Lee, Jae-Ho ;
Lee, Sang-Hoon ;
Lee, Hyun Joon ;
Oh, Jung-Hoon ;
Kim, Jang-Yeol ;
Cho, In-Kui ;
Seo, Dong-Wook .
IEEE ACCESS, 2022, 10 :47195-47202
[9]   Capacitively Coupled Microstrip Comb-Line Array Antennas for Millimeter-Wave Applications [J].
Lee, Jae-Ho ;
Lee, Jong Min ;
Hwang, Keum Cheol ;
Seo, Dong-Wook ;
Shin, DongSeung ;
Lee, Cheolhyo .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2020, 19 (08) :1336-1339
[10]   Low Sidelobe Design of Microstrip Comb-Line Array Antenna Using Deformed Radiating Elements in the Millimeter-Wave Band [J].
Lee, Jae-In ;
Lee, Jae-Ho ;
Lee, Sang-Hoon ;
Seo, Dong-Wook .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (10) :9930-9935