Patch-Based Spatio-Temporal Deformable Attention BiRNN for Video Deblurring

被引:0
作者
Zhang, Huicong [1 ]
Xie, Haozhe [2 ]
Zhang, Shengping [3 ]
Yao, Hongxun [1 ]
机构
[1] Harbin Inst Technol, Fac Comp, Harbin 150001, Peoples R China
[2] Nanyang Technol Univ, S Lab, Singapore 639798, Singapore
[3] Harbin Inst Technol, Fac Comp, Weihai 264200, Peoples R China
关键词
Image restoration; Feature extraction; Aggregates; Optical flow; Fuses; Video sequences; Transformers; Recurrent neural networks; Image motion analysis; Computer vision; Video deblurring; pixel-wise blur levels; patch-based spatio-temporal deformable attention; long-term frame fusion; NETWORK;
D O I
10.1109/TCSVT.2025.3527867
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Successful video deblurring relies on effectively using sharp pixels from other frames to recover the blurry pixels of the current frame. However, mainstream methods only use estimated optical flows to align and fuse features from adjacent frames without considering the pixel-wise blur levels, leading to the introduction of blurry pixels from adjacent frames. Furthermore, these methods fail to effectively exploit information from the entire input video. To address these limitations, we propose STDANet++, which redesigns the state-of-the-art method STDANet by introducing patch-based spatio-temporal deformable attention (PSTDA) module and long-term frame fusion (LTFF) module to the BiRNN-based structure. By effectively utilizing sharp information across the entire video, the proposed method outperforms state-of-the-art methods on the GoPro, DVD and BSD datasets, according to our experimental results. The source code is available at https://github.com/huicongzhang/STDANetPP.
引用
收藏
页码:5545 / 5559
页数:15
相关论文
共 45 条
[1]   Burst Image Deblurring Using Permutation Invariant Convolutional Neural Networks [J].
Aittala, Miika ;
Durand, Fredo .
COMPUTER VISION - ECCV 2018, PT VIII, 2018, 11212 :748-764
[2]  
Argaw DM, 2021, AAAI CONF ARTIF INTE, V35, P901
[3]   VDTR: Video Deblurring With Transformer [J].
Cao, Mingdeng ;
Fan, Yanbo ;
Zhang, Yong ;
Wang, Jue ;
Yang, Yujiu .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (01) :160-171
[4]   BasicVSR plus plus : Improving Video Super-Resolution with Enhanced Propagation and Alignment [J].
Chan, Kelvin C. K. ;
Zhou, Shangchen ;
Xu, Xiangyu ;
Loy, Chen Change .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5962-5971
[5]  
Chen HJ, 2018, IEEE INT CONF COMPUT
[6]  
Ghasemabadi A, 2024, Arxiv, DOI arXiv:2410.03936
[7]   Multi-Scale Memory-Based Video Deblurring [J].
Ji, Bo ;
Yao, Angela .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1918-1927
[8]   ERDN: Equivalent Receptive Field Deformable Network for Video Deblurring [J].
Jiang, Bangrui ;
Xie, Zhihuai ;
Xia, Zhen ;
Li, Songnan ;
Liu, Shan .
COMPUTER VISION - ECCV 2022, PT XVIII, 2022, 13678 :663-678
[9]  
Jin HL, 2005, PROC CVPR IEEE, P18
[10]   Online Video Deblurring via Dynamic Temporal Blending Network [J].
Kim, Tae Hyun ;
Lee, Kyoung Mu ;
Schoelkopf, Bernhard ;
Hirsch, Michael .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4058-4067