EXISTENCE AND NON-EXISTENCE OF NORMALIZED SOLUTIONS FOR A NONLINEAR FRACTIONAL SCHRODINGER SYSTEM

被引:0
作者
Liu, Chungen [1 ]
Zhang, Zhigao [1 ]
Zuo, Jiabin [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger system; fractional Laplacian; normalized solu-tions; constrained minimization; GROUND-STATES; EXCITED-STATES; EQUATIONS;
D O I
10.3934/cpaa.2025061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with a nonlinear fractional Schrdinger system in R with intraspecies interactions a(i) > 0 (i = 1,2) and interspecies interactions beta is an element of R. We study this system by solving an associated constrained minimization problem (i.e., L-2-norm constaints). Under certain assumptions on the trapping potentials Vi(x) (i = 1, 2), we derive some delicate estimates for the related energy functional and establish a criterion for the existence and non-existence of solutions, in which way several existence results are obtained.
引用
收藏
页码:1830 / 1860
页数:31
相关论文
共 35 条
[1]  
Applebaum D., 2004, NOTICES AMS, V51, P1336
[2]  
Applebaum D, 2009, CAM ST AD M, V93, P1
[3]   Ground States of Two-component Bose-Einstein Condensates with an Internal Atomic Josephson Junction [J].
Bao, Weizhu ;
Cai, Yongyong .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2011, 1 (01) :49-81
[4]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[5]  
Caliari M, 2008, DYNAM PART DIFFER EQ, V5, P117
[6]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[7]   Positive Least Energy Solutions and Phase Separation for Coupled Schrodinger Equations with Critical Exponent [J].
Chen, Zhijie ;
Zou, Wenming .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) :515-551
[8]   Bound state for the fractional Schrodinger equation with unbounded potential [J].
Cheng, Ming .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (04)
[9]   EXISTENCE AND SYMMETRY RESULTS FOR A SCHRODINGER TYPE PROBLEM INVOLVING THE FRACTIONAL LAPLACIAN [J].
Dipierro, S. ;
Palatucci, G. ;
Valdinoci, E. .
MATEMATICHE, 2013, 68 (01) :201-216
[10]   Existence of normalized solutions for nonlinear fractional Schrodinger equations with trapping potentials [J].
Du, Miao ;
Tian, Lixin ;
Wang, Jun ;
Zhang, Fubao .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (03) :617-653