Anomalous universal quantum transport in a two-dimensional asymptotic quasiperiodic system

被引:0
作者
Poon, Ting-Fung Jeffrey [1 ,2 ]
Wan, Yuhao [1 ]
Wang, Yucheng [3 ,4 ,5 ]
Liu, Xiong-Jun [1 ,2 ,4 ]
机构
[1] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[2] Hefei Natl Lab, Hefei 230088, Peoples R China
[3] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Int Quantum Acad, Shenzhen 518048, Peoples R China
[5] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
FRACTIONAL CHERN INSULATORS; ANDERSON LOCALIZATION; DIFFUSION; DYNAMICS; FERMIONS; LATTICE; PHASE;
D O I
10.1103/4sqj-jqz9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quasiperiodic systems extend the concept of Anderson transition to quasirandom and low-dimensional realms and have garnered widespread attention. Here, we propose asymptotic quasiperiodic two-dimensional systems characterized by a sequence of rational magnetic fluxes, which have an irrational limit, and predict exotic universal wave-packet dynamics and transport phenomena associated with asymptotic quasiperiodicity (AQP). The predictions unveil a class of multiple metal-insulator transitions driven by the interplay between AQP, relaxation, and finite temperature, which further reveals a unified and profound mechanism. Specifically, all the transport phenomena, including the wave-packet dynamics, the bulk and edge transport, are unified in the universal scaling laws unveiled in the asymptotic quasiperiodic regime, which demonstrate a nontrivial asymptotic connection to quantum phases in the quasiperiodic limit. Our work enriches the universal quantum transport phenomena, adding to the basic mechanisms underlying metal-insulator transitions, and opens up an avenue to study the exotic transport physics with AQP in high dimensions.
引用
收藏
页数:8
相关论文
共 99 条
[1]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[2]   Dirac electrons in a dodecagonal graphene quasicrystal [J].
Ahn, Sung Joon ;
Moon, Pilkyung ;
Kim, Tae-Hoon ;
Kim, Hyun-Woo ;
Shin, Ha-Chul ;
Kim, Eun Hye ;
Cha, Hyun Woo ;
Kahng, Se-Jong ;
Kim, Philip ;
Koshino, Mikito ;
Son, Young-Woo ;
Yang, Cheol-Woong ;
Ahn, Joung Real .
SCIENCE, 2018, 361 (6404) :782-+
[3]   Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices [J].
Aidelsburger, M. ;
Atala, M. ;
Lohse, M. ;
Barreiro, J. T. ;
Paredes, B. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2013, 111 (18)
[4]   Interactions and Mobility Edges: Observing the Generalized Aubry-Andre Model [J].
An, Fangzhao Alex ;
Padavic, Karmela ;
Meier, Eric J. ;
Hegde, Suraj ;
Ganeshan, Sriram ;
Pixley, J. H. ;
Vishveshwara, Smitha ;
Gadway, Bryce .
PHYSICAL REVIEW LETTERS, 2021, 126 (04)
[5]   Engineering a Flux-Dependent Mobility Edge in Disordered Zigzag Chains [J].
An, Fangzhao Alex ;
Meier, Eric J. ;
Gadway, Bryce .
PHYSICAL REVIEW X, 2018, 8 (03)
[6]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[7]   QUANTUM PARTICLE IN ONE-DIMENSIONAL POTENTIALS WITH INCOMMENSURATE PERIODS [J].
AZBEL, MY .
PHYSICAL REVIEW LETTERS, 1979, 43 (26) :1954-1957
[8]  
Bai YF, 2025, Arxiv, DOI arXiv:2406.01445
[9]   Transport in quasiperiodic interacting systems: From superdiffusion to subdiffusion [J].
Bar Lev, Yevgeny ;
Kennes, Dante M. ;
Kloeckner, Christian ;
Reichman, David R. ;
Karrasch, Christoph .
EPL, 2017, 119 (03)
[10]   Controlling the Dynamics of an Open Many-Body Quantum System with Localized Dissipation [J].
Barontini, G. ;
Labouvie, R. ;
Stubenrauch, F. ;
Vogler, A. ;
Guarrera, V. ;
Ott, H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (03)